WhisperForSpokenNER

This model is a fine-tuned version of openai/whisper-large-v2 on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4253
  • F1 Score: 0.7984
  • Label F1: 0.8971
  • Wer: 0.0599

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Label F1 Wer
0.4435 0.36 200 0.4357 0.4513 0.7168 0.0599
0.4309 0.71 400 0.4306 0.6751 0.8354 0.0599
0.4235 1.07 600 0.4282 0.6722 0.8548 0.0599
0.4267 1.43 800 0.4269 0.7073 0.8455 0.0599
0.4254 1.79 1000 0.4264 0.7273 0.8678 0.0599
0.4264 2.14 1200 0.4264 0.7398 0.8780 0.0599
0.4206 2.5 1400 0.4262 0.7206 0.8583 0.0599
0.4232 2.86 1600 0.4260 0.7410 0.8685 0.0599
0.4249 3.22 1800 0.4255 0.7603 0.8926 0.0599
0.4239 3.57 2000 0.4256 0.7631 0.8835 0.0599
0.4213 3.93 2200 0.4255 0.7692 0.8988 0.0599
0.4213 4.29 2400 0.4256 0.7769 0.8926 0.0599
0.4244 4.65 2600 0.4253 0.7711 0.8996 0.0599
0.4234 5.0 2800 0.4254 0.7386 0.8797 0.0599
0.4222 5.36 3000 0.4252 0.7917 0.9 0.0599
0.4239 5.72 3200 0.4254 0.7801 0.8963 0.0599
0.4201 6.08 3400 0.4254 0.7950 0.8954 0.0599
0.4194 6.43 3600 0.4253 0.7851 0.9008 0.0599
0.4203 6.79 3800 0.4252 0.7934 0.9091 0.0599
0.4214 7.15 4000 0.4253 0.8050 0.9046 0.0599
0.4206 7.51 4200 0.4253 0.8 0.9 0.0599
0.4205 7.86 4400 0.4253 0.8050 0.9129 0.0599
0.4207 8.22 4600 0.4253 0.7951 0.9016 0.0599
0.4218 8.58 4800 0.4253 0.7984 0.8971 0.0599
0.4201 8.94 5000 0.4253 0.7984 0.8971 0.0599

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
14
Safetensors
Model size
1.56B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for qmeeus/whisper-large-multilingual-spoken-ner-pipeline-step-1

Finetuned
(191)
this model

Dataset used to train qmeeus/whisper-large-multilingual-spoken-ner-pipeline-step-1

Evaluation results