|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- dutch |
|
- whisper-event |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-nl |
|
results: [] |
|
--- |
|
|
|
# whisper-small-nl |
|
|
|
This model is a fine-tuned version of [qmeeus/whisper-small-nl](https://huggingface.co/qmeeus/whisper-small-nl) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3034 |
|
- Wer: 14.5354 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
Transcribe files in Dutch: |
|
|
|
```python |
|
import soundfile as sf |
|
from transformers import pipeline |
|
|
|
whisper_asr = pipeline("automatic-speech-recognition", model="qmeeus/whisper-small-nl", device=0) |
|
whisper_asr.model.config.forced_decoder_ids = whisper_asr.tokenizer.get_decoder_prompt_ids( |
|
task="transcribe", language="nl" |
|
) |
|
|
|
waveform, sr = sf.read(filename) |
|
|
|
def iter_chunks(waveform, sampling_rate=16_000, chunk_length=30.): |
|
assert sampling_rate == 16_000 |
|
n_frames = math.floor(sampling_rate * chunk_length) |
|
for start in range(0, len(waveform), n_frames): |
|
end = min(len(waveform), start + n_frames) |
|
yield waveform[start:end] |
|
|
|
for sentence in whisper_asr(iter_chunks(waveform, sr)): |
|
print(sentence["text"]) |
|
|
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.2045 | 2.49 | 1000 | 0.3194 | 16.1628 | |
|
| 0.0652 | 4.97 | 2000 | 0.3425 | 16.3672 | |
|
| 0.0167 | 7.46 | 3000 | 0.3915 | 15.8187 | |
|
| 0.0064 | 9.95 | 4000 | 0.4190 | 15.7298 | |
|
| 0.1966 | 2.02 | 5000 | 0.3298 | 15.0881 | |
|
| 0.1912 | 4.04 | 6000 | 0.3266 | 14.8764 | |
|
| 0.1008 | 7.02 | 7000 | 0.3261 | 14.8086 | |
|
| 0.0899 | 9.04 | 8000 | 0.3196 | 14.6487 | |
|
| 0.1126 | 12.02 | 9000 | 0.3283 | 14.5894 | |
|
| 0.1071 | 14.04 | 10000 | 0.3034 | 14.5354 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|