|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: intfloat/multilingual-e5-large |
|
widget: |
|
- source_sentence: a) Đảm bảo quyền lợi của cổ đông, nhà đầu tư |
|
sentences: |
|
- a) 5% |
|
- Làm thế nào để cổ đông có thể tham gia Đại hội đồng cổ đông năm 2022 của Tập đoàn? |
|
- Trong Ban Kiểm soát FPT, ai là Trưởng Ban Kiểm soát và đã đảm nhiệm vị trí này |
|
từ năm nào đến năm nào? |
|
- source_sentence: Vốn điều lệ của công ty là bao nhiêu VNĐ? |
|
sentences: |
|
- Tổng vốn đầu tư của công ty FPT là bao nhiêu? |
|
- Tính tổng số CP mà cả hai Đỗ Cao Bảo và Bùi Quang Ngọc đã nhận từ cả hai nguồn |
|
trên. |
|
- FPT đã thực hiện chế độ làm việc 'thời chiến' như thế nào để thích ứng với tình |
|
hình Covid-19? |
|
- source_sentence: FPT Corporation được thành lập vào ngày nào? |
|
sentences: |
|
- Ngày thành lập của FPT là khi nào và tại địa chỉ nào? |
|
- Các công ty nào đã được đề cập là đối tác hợp tác của FPT trong việc chuyển đổi |
|
số? |
|
- Khối Viễn thông đã đạt được những kết quả nào vượt kế hoạch trong doanh thu và |
|
LNTT? |
|
- source_sentence: Ông Võ Đặng Phát gia nhập FPT từ năm nào? |
|
sentences: |
|
- Ông Võ Đặng Phát được bổ nhiệm vào vị trí nào trong FPT từ tháng 07/2022? |
|
- Tại sao FPT định hướng mua bán và sáp nhập (M&A) để tăng cường số lượng chuyên |
|
gia? |
|
- Động lực tăng trưởng mới mà Ban Lãnh đạo Tập đoàn FPT đã xác định bao gồm những |
|
yếu tố nào? |
|
- source_sentence: Chương trình hành động của FPT nhằm mục đích gì? |
|
sentences: |
|
- FPT tham chiếu với những mục tiêu nào khi xác lập các chương trình hành động? |
|
- FPT đã hình thành được bao nhiêu hệ sinh thái và giải pháp chuyển đổi số toàn |
|
diện? |
|
- 'Câu hỏi: Tại sao việc tuân thủ nguyên tắc an ninh trong quản trị dữ liệu là quan |
|
trọng?' |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-large |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Chương trình hành động của FPT nhằm mục đích gì?', |
|
'FPT tham chiếu với những mục tiêu nào khi xác lập các chương trình hành động?', |
|
'FPT đã hình thành được bao nhiêu hệ sinh thái và giải pháp chuyển đổi số toàn diện?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 3,516 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 27.61 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 81 tokens</li><li>mean: 415.23 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Câu hỏi: FPT tập trung hoạt động trên những lĩnh vực nào trong năm 2018 và có những chỉ số tài chính nổi bật nào?</code> | <code>1 <br> I. DẤU ẤN FPT 30 NĂM <br>1. Các ch ỉ số cơ bản và gi ải thư ởng nổi bật năm 2018 <br>1.1. Các chỉ số cơ bản <br>Năm 2018, FPT t ập trung ho ạt động trên 03 lĩnh v ực: Công ngh ệ, Viễn thông và Giáo d ục đào t ạo sau khi <br>thoái v ốn tại lĩnh v ực Phân ph ối và Bán l ẻ. Các ch ỉ số tài chính tiêu bi ểu của FPT như sau: <br>- Doanh thu <br>✓ Tổng doanh thu: 23.214 t ỷ đồng, tăng 17,4% <br>✓ Doanh thu t ừ thị trường nư ớc ngoài: 9.109 t ỷ đồng, tăng 26,5% <br>- Lợi nhu ận LNTT <br>✓ Tổng LNTT: 3. 858 tỷ đồng, tăng 30, 6% <br>✓ Tổng LNTT t ừ thị trường nư ớc ngoài: 1.492 t ỷ đồng, tăng 23,6% <br>- Tỷ trọng doanh thu <br>✓ Doanh thu kh ối công ngh ệ/tổng doanh thu: 57,7% <br>✓ Doanh thu chuy ển đổi số/tổng doanh thu xu ất khẩu phần mềm: 20% <br>- Tỷ suất LNTT: 16,6%, g ấp 1,7 l ần năm 2017 <br>- Quy mô nhân l ực (*) <br>✓ Tổng nhân l ực: 27. 843 người <br>✓ Số kỹ sư, lập trình viên, chuyên gia công ngh ệ: 16.3 23 ngư ời <br>(*): Do trong năm 2018, FPT Retail và Synnex FPT không còn là công ty con trong T ập đoàn nên t ổng <br>nhân l ực của Tập đoàn không bao g ồm nhân l ực tại hai công ty này. <br>1.2. Giải thưởng <br>- Top 10 Công ty tư nhân l ớn nhất Việt Nam <br>- Top 40 Thương hi ệu công ty giá tr ị nhất Việt Nam <br>- Top 50 Công ty niêm y ết tốt nhất Việt Nam <br>- Top 50 Công ty kinh doanh hi ệu quả nhất Việt Nam <br>- Đối tác tư v ấn cấp cao đ ầu tiên t ại khu v ực ASEAN - AWS Premier Consulting Partner <br>- Top 130 công ty có môi trư ờng làm vi ệc tốt nhất khu v ực châu Á <br>- Tổ chức đào t ạo CNTT xu ất sắc (ASOCIO + BrandLaureate) <br>2. Hoạt động nổi bật năm 2018 <br>2.1. Lần đầu tiên doanh nghiệp Việt Nam mua một công ty tư vấn công nghệ Mỹ <br>Với mục tiêu cung c ấp những giá tr ị cao hơn cho khách hàng trên ph ạm vi toàn c ầu và m ở rộng hơn n ữa <br>quy mô ho ạt động tại thị trường M ỹ, FPT tr ở thành công ty CNTT đ ầu tiên c ủa Việt Nam mua 90% c ổ phần <br>của công ty tư v ấn Mỹ - Intellinet.</code> | |
|
| <code>Tại sao FPT quyết định mua công ty tư vấn công nghệ Intellinet của Mỹ?</code> | <code>Hoạt động nổi bật năm 2018 <br>2.1. Lần đầu tiên doanh nghiệp Việt Nam mua một công ty tư vấn công nghệ Mỹ <br>Với mục tiêu cung c ấp những giá tr ị cao hơn cho khách hàng trên ph ạm vi toàn c ầu và m ở rộng hơn n ữa <br>quy mô ho ạt động tại thị trường M ỹ, FPT tr ở thành công ty CNTT đ ầu tiên c ủa Việt Nam mua 90% c ổ phần <br>của công ty tư v ấn Mỹ - Intellinet. Đây là m ột trong nh ững công ty tư v ấn công ngh ệ có tốc độ tăng trư ởng <br>nhanh nh ất tại Mỹ. <br>Thương v ụ này giúp FPT nâng t ầm vị thế công ngh ệ, trở thành đ ối tác cung c ấp các d ịch vụ công ngh ệ tổng <br>thể với giá tr ị cao hơn và toàn di ện hơn cho khách hàng, t ừ khâu tư v ấn chi ến lược, thi ết kế đến triển khai,</code> | |
|
| <code>Theo bạn, việc FPT mua Intellinet sẽ ảnh hưởng như thế nào đến quy mô hoạt động của FPT tại thị trường Mỹ?</code> | <code>Hoạt động nổi bật năm 2018 <br>2.1. Lần đầu tiên doanh nghiệp Việt Nam mua một công ty tư vấn công nghệ Mỹ <br>Với mục tiêu cung c ấp những giá tr ị cao hơn cho khách hàng trên ph ạm vi toàn c ầu và m ở rộng hơn n ữa <br>quy mô ho ạt động tại thị trường M ỹ, FPT tr ở thành công ty CNTT đ ầu tiên c ủa Việt Nam mua 90% c ổ phần <br>của công ty tư v ấn Mỹ - Intellinet. Đây là m ột trong nh ững công ty tư v ấn công ngh ệ có tốc độ tăng trư ởng <br>nhanh nh ất tại Mỹ. <br>Thương v ụ này giúp FPT nâng t ầm vị thế công ngh ệ, trở thành đ ối tác cung c ấp các d ịch vụ công ngh ệ tổng <br>thể với giá tr ị cao hơn và toàn di ện hơn cho khách hàng, t ừ khâu tư v ấn chi ến lược, thi ết kế đến triển khai,</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.5688 | 500 | 0.2547 | |
|
| 1.1377 | 1000 | 0.1518 | |
|
| 1.7065 | 1500 | 0.0559 | |
|
| 2.2753 | 2000 | 0.0285 | |
|
| 2.8441 | 2500 | 0.0163 | |
|
| 3.4130 | 3000 | 0.0062 | |
|
| 3.9818 | 3500 | 0.0038 | |
|
| 4.5506 | 4000 | 0.0026 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu118 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |