|
--- |
|
language: ja |
|
datasets: |
|
- common_voice |
|
- jsut |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Japanese XLSR Wav2Vec2 Large 53 |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice ja |
|
type: common_voice |
|
args: ja |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 51.72 |
|
- name: Test CER |
|
type: cer |
|
value: 24.89 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Japanese |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), and JSUT dataset{s}. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") |
|
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Japanese test data of Common Voice. |
|
|
|
```python |
|
!pip install torchaudio |
|
!pip install datasets transformers |
|
!pip install jiwer |
|
!pip install mecab-python3 |
|
!pip install unidic-lite |
|
!python -m unidic download |
|
!pip install jaconv |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import MeCab |
|
from jaconv import kata2hira |
|
from typing import List |
|
|
|
# Japanese preprocessing |
|
tagger = MeCab.Tagger("-Owakati") |
|
chars_to_ignore_regex = '[\。\、\「\」\,\?\.\!\-\;\:\"\“\%\‘\”\�]' |
|
|
|
def text2kata(text): |
|
node = tagger.parseToNode(text) |
|
word_class = [] |
|
while node: |
|
word = node.surface |
|
wclass = node.feature.split(',') |
|
if wclass[0] != u'BOS/EOS': |
|
if len(wclass) <= 6: |
|
word_class.append((word)) |
|
elif wclass[6] == None: |
|
word_class.append((word)) |
|
else: |
|
word_class.append((wclass[6])) |
|
node = node.next |
|
return ' '.join(word_class) |
|
|
|
def hiragana(text): |
|
return kata2hira(text2kata(text)) |
|
|
|
test_dataset = load_dataset("common_voice", "ja", split="test") |
|
wer = load_metric("wer") |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz |
|
# resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") |
|
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") |
|
model.to("cuda") |
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = hiragana(batch["sentence"]).strip() |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
def cer_compute(predictions: List[str], references: List[str]): |
|
p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions] |
|
r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references] |
|
return wer.compute(predictions=p, references=r) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result**: 51.72 % |
|
|
|
## Training |
|
|
|
<!-- The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. --> |
|
|
|
The privately collected JSUT Japanese dataset was used for training. |
|
|
|
<!-- The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. --> |
|
|