Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, e.g. French

Fine-tuned facebook/wav2vec2-large-xlsr-53 on {language} using the Common Voice, ... and ... dataset{s}. #TODO: replace {language} with your language, e.g. French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, e.g. French

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'  # TODO: adapt this list to include all special characters you removed from the data
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: XX.XX %

Training

The Common Voice train, validation, and ... datasets were used for training as well as ... and ...

The script used for training can be found here

Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train qqpann/wav2vec2-large-xlsr-japanese-0325-1200

Evaluation results