|
from typing import Any, Dict |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from PIL import Image |
|
from io import BytesIO |
|
import torch |
|
import base64 |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model = BlipForConditionalGeneration.from_pretrained( |
|
"quadranttechnologies/qhub-blip-image-captioning-finetuned").to(device) |
|
self.processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned") |
|
self.model.eval() |
|
self.model = self.model.to(device).to(device) |
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict of one list like {"descriptions": ["Description of the image"]} containing : |
|
- "description": A string corresponding to the generated description. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
text = data.get("text", "") |
|
parameters = data.pop("parameters", {}) |
|
|
|
raw_images = Image.open(inputs).convert("RGB") |
|
|
|
processed_image = self.processor(images=raw_images, text=text, return_tensors="pt") |
|
processed_image["pixel_values"] = processed_image["pixel_values"].to(device) |
|
processed_image = {**processed_image, **parameters} |
|
|
|
with torch.no_grad(): |
|
out = self.model.generate( |
|
**processed_image |
|
) |
|
description = self.processor.batch_decode(out, skip_special_tokens=True) |
|
|
|
return {"description": description} |
|
|
|
|
|
handler = EndpointHandler() |
|
|