qaihm-bot's picture
Upload README.md with huggingface_hub
b1147ee verified
---
library_name: pytorch
license: bsd-3-clause
pipeline_tag: image-classification
tags:
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/convnext_tiny_w8a16_quantized/web-assets/model_demo.png)
# ConvNext-Tiny-w8a16-Quantized: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone
ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of ConvNext-Tiny-w8a16-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py).
This repository provides scripts to run ConvNext-Tiny-w8a16-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
### Model Details
- **Model Type:** Image classification
- **Model Stats:**
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 28.6M
- Model size: 28 MB
- Precision: w8a16 (8-bit weights, 16-bit activations)
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.442 ms | 0 - 138 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.456 ms | 0 - 38 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
| ConvNext-Tiny-w8a16-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.432 ms | 0 - 38 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 13.141 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.1 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | SA7255P ADP | SA7255P | QNN | 26.846 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.108 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | SA8295P ADP | SA8295P | QNN | 4.709 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.1 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | SA8775P ADP | SA8775P | QNN | 4.465 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.289 ms | 0 - 41 MB | INT8 | NPU | Use Export Script |
| ConvNext-Tiny-w8a16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.381 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[convnext_tiny_w8a16_quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.convnext_tiny_w8a16_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.export
```
```
Profiling Results
------------------------------------------------------------
ConvNext-Tiny-w8a16-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 3.4
Estimated peak memory usage (MB): [0, 138]
Total # Ops : 215
Compute Unit(s) : NPU (215 ops)
```
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.convnext_tiny_w8a16_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on ConvNext-Tiny-w8a16-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of ConvNext-Tiny-w8a16-Quantized can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).