DDRNet23-Slim / README.md
qaihm-bot's picture
v0.33.0
349669e verified
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: image-segmentation
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/ddrnet23_slim/web-assets/model_demo.png)
# DDRNet23-Slim: Optimized for Mobile Deployment
## Segment images or video by class in real-time on device
DDRNet23Slim is a machine learning model that segments an image into semantic classes, specifically designed for road-based scenes. It is designed for the application of self-driving cars.
This model is an implementation of DDRNet23-Slim found [here](https://github.com/chenjun2hao/DDRNet.pytorch).
This repository provides scripts to run DDRNet23-Slim on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/ddrnet23_slim).
### Model Details
- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
- Model checkpoint: DDRNet23s_imagenet.pth
- Inference latency: RealTime
- Input resolution: 2048x1024
- Number of output classes: 19
- Number of parameters: 6.13M
- Model size (float): 21.7 MB
- Model size (w8a8): 6.11 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DDRNet23-Slim | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 113.157 ms | 2 - 46 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 96.369 ms | 24 - 78 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 48.382 ms | 2 - 58 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 59.035 ms | 24 - 82 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 40.729 ms | 2 - 32 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 32.367 ms | 25 - 45 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 49.159 ms | 2 - 46 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 39.898 ms | 24 - 79 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 113.157 ms | 2 - 46 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 96.369 ms | 24 - 78 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 40.954 ms | 2 - 18 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 32.55 ms | 24 - 59 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 54.298 ms | 2 - 49 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 42.484 ms | 20 - 74 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 40.872 ms | 2 - 26 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 32.394 ms | 24 - 65 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 49.159 ms | 2 - 46 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 39.898 ms | 24 - 79 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 40.51 ms | 3 - 28 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 32.759 ms | 26 - 64 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 25.145 ms | 24 - 71 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.onnx) |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 27.024 ms | 2 - 54 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 23.198 ms | 24 - 83 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 16.604 ms | 30 - 84 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.onnx) |
| DDRNet23-Slim | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 27.701 ms | 1 - 48 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.tflite) |
| DDRNet23-Slim | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 18.691 ms | 24 - 85 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 12.679 ms | 29 - 81 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.onnx) |
| DDRNet23-Slim | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 34.673 ms | 24 - 24 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.dlc) |
| DDRNet23-Slim | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 27.944 ms | 24 - 24 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim.onnx) |
| DDRNet23-Slim | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 98.191 ms | 1 - 32 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 139.626 ms | 6 - 55 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 50.277 ms | 1 - 47 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 74.216 ms | 6 - 66 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 49.281 ms | 0 - 17 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 71.587 ms | 6 - 27 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 50.221 ms | 1 - 33 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 57.86 ms | 3 - 53 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 162.786 ms | 11 - 50 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 312.518 ms | 17 - 30 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 98.191 ms | 1 - 32 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 139.626 ms | 6 - 55 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 49.645 ms | 0 - 21 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 71.629 ms | 6 - 28 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 58.412 ms | 1 - 36 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 83.083 ms | 6 - 57 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 49.489 ms | 0 - 17 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 71.469 ms | 6 - 28 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 50.221 ms | 1 - 33 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 57.86 ms | 3 - 53 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 49.373 ms | 0 - 13 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 71.423 ms | 6 - 31 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 75.11 ms | 78 - 94 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.onnx) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 37.854 ms | 1 - 44 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 54.607 ms | 6 - 68 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 58.64 ms | 73 - 127 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.onnx) |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 37.73 ms | 1 - 35 MB | NPU | [DDRNet23-Slim.tflite](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.tflite) |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 49.577 ms | 6 - 68 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 50.217 ms | 89 - 142 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.onnx) |
| DDRNet23-Slim | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 75.919 ms | 20 - 20 MB | NPU | [DDRNet23-Slim.dlc](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.dlc) |
| DDRNet23-Slim | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 80.909 ms | 130 - 130 MB | NPU | [DDRNet23-Slim.onnx](https://huggingface.co/qualcomm/DDRNet23-Slim/blob/main/DDRNet23-Slim_w8a8.onnx) |
## Installation
Install the package via pip:
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.ddrnet23_slim.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddrnet23_slim.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.ddrnet23_slim.export
```
```
Profiling Results
------------------------------------------------------------
DDRNet23-Slim
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 113.2
Estimated peak memory usage (MB): [2, 46]
Total # Ops : 133
Compute Unit(s) : npu (133 ops) gpu (0 ops) cpu (0 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/ddrnet23_slim/qai_hub_models/models/DDRNet23-Slim/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.ddrnet23_slim import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.ddrnet23_slim.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.ddrnet23_slim.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on DDRNet23-Slim's performance across various devices [here](https://aihub.qualcomm.com/models/ddrnet23_slim).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of DDRNet23-Slim can be found
[here](https://github.com/chenjun2hao/DDRNet.pytorch/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes](https://arxiv.org/abs/2101.06085)
* [Source Model Implementation](https://github.com/chenjun2hao/DDRNet.pytorch)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).