EfficientViT-b2-cls: Optimized for Mobile Deployment
Imagenet classifier and general purpose backbone
EfficientViT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of EfficientViT-b2-cls found here.
This repository provides scripts to run EfficientViT-b2-cls on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Image classification
- Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 24M
- Model size: 200 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.799 ms | 0 - 222 MB | FP16 | NPU | EfficientViT-b2-cls.tflite |
EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 7.526 ms | 0 - 214 MB | FP16 | NPU | EfficientViT-b2-cls.so |
EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.112 ms | 0 - 57 MB | FP16 | NPU | EfficientViT-b2-cls.onnx |
EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.2 ms | 0 - 36 MB | FP16 | NPU | EfficientViT-b2-cls.tflite |
EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.967 ms | 1 - 37 MB | FP16 | NPU | EfficientViT-b2-cls.so |
EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.867 ms | 0 - 185 MB | FP16 | NPU | EfficientViT-b2-cls.onnx |
EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.385 ms | 0 - 37 MB | FP16 | NPU | EfficientViT-b2-cls.tflite |
EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.308 ms | 1 - 36 MB | FP16 | NPU | Use Export Script |
EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.539 ms | 1 - 58 MB | FP16 | NPU | EfficientViT-b2-cls.onnx |
EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.597 ms | 0 - 244 MB | FP16 | NPU | EfficientViT-b2-cls.tflite |
EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 7.205 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.959 ms | 0 - 36 MB | FP16 | NPU | EfficientViT-b2-cls.tflite |
EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.589 ms | 0 - 35 MB | FP16 | NPU | Use Export Script |
EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.689 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.9 ms | 51 - 51 MB | FP16 | NPU | EfficientViT-b2-cls.onnx |
Installation
This model can be installed as a Python package via pip.
pip install "qai-hub-models[efficientvit_b2_cls]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.efficientvit_b2_cls.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.efficientvit_b2_cls.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.efficientvit_b2_cls.export
Profiling Results
------------------------------------------------------------
EfficientViT-b2-cls
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 7.8
Estimated peak memory usage (MB): [0, 222]
Total # Ops : 379
Compute Unit(s) : NPU (379 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.efficientvit_b2_cls import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.efficientvit_b2_cls.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.efficientvit_b2_cls.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on EfficientViT-b2-cls's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of EfficientViT-b2-cls can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.