Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,35 +36,34 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.
|
40 |
-
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 7.
|
41 |
-
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.
|
42 |
-
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.
|
43 |
-
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.
|
44 |
-
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.
|
45 |
-
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
46 |
-
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN |
|
47 |
-
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.
|
48 |
-
| EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.
|
49 |
-
| EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 7.
|
50 |
-
| EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.
|
51 |
-
| EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.
|
52 |
-
| EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.
|
53 |
-
| EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
## Installation
|
59 |
|
60 |
-
This model can be installed as a Python package via pip.
|
61 |
|
|
|
62 |
```bash
|
63 |
-
pip install "qai-hub-models[
|
64 |
```
|
65 |
|
66 |
|
67 |
-
|
68 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
69 |
|
70 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -116,7 +115,7 @@ EfficientViT-b2-cls
|
|
116 |
Device : Samsung Galaxy S23 (13)
|
117 |
Runtime : TFLITE
|
118 |
Estimated inference time (ms) : 7.6
|
119 |
-
Estimated peak memory usage (MB): [0,
|
120 |
Total # Ops : 379
|
121 |
Compute Unit(s) : NPU (379 ops)
|
122 |
```
|
@@ -143,7 +142,7 @@ from qai_hub_models.models.efficientvit_b2_cls import Model
|
|
143 |
torch_model = Model.from_pretrained()
|
144 |
|
145 |
# Device
|
146 |
-
device = hub.Device("Samsung Galaxy
|
147 |
|
148 |
# Trace model
|
149 |
input_shape = torch_model.get_input_spec()
|
@@ -235,7 +234,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
235 |
|
236 |
|
237 |
## License
|
238 |
-
* The license for the original implementation of EfficientViT-b2-cls can be found
|
|
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.612 ms | 0 - 233 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
|
40 |
+
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 7.507 ms | 0 - 214 MB | FP16 | NPU | [EfficientViT-b2-cls.so](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.so) |
|
41 |
+
| EfficientViT-b2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.24 ms | 0 - 140 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
|
42 |
+
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.228 ms | 0 - 32 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
|
43 |
+
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.951 ms | 1 - 37 MB | FP16 | NPU | [EfficientViT-b2-cls.so](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.so) |
|
44 |
+
| EfficientViT-b2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.823 ms | 1 - 42 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
|
45 |
+
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.172 ms | 0 - 39 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
|
46 |
+
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.265 ms | 1 - 39 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| EfficientViT-b2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.62 ms | 1 - 41 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
|
48 |
+
| EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.78 ms | 0 - 232 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
|
49 |
+
| EfficientViT-b2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 7.207 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.053 ms | 0 - 35 MB | FP16 | NPU | [EfficientViT-b2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.tflite) |
|
51 |
+
| EfficientViT-b2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.485 ms | 1 - 37 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.673 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| EfficientViT-b2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.877 ms | 51 - 51 MB | FP16 | NPU | [EfficientViT-b2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-b2-cls/blob/main/EfficientViT-b2-cls.onnx) |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
## Installation
|
59 |
|
|
|
60 |
|
61 |
+
Install the package via pip:
|
62 |
```bash
|
63 |
+
pip install "qai-hub-models[efficientvit-b2-cls]"
|
64 |
```
|
65 |
|
66 |
|
|
|
67 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
68 |
|
69 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
115 |
Device : Samsung Galaxy S23 (13)
|
116 |
Runtime : TFLITE
|
117 |
Estimated inference time (ms) : 7.6
|
118 |
+
Estimated peak memory usage (MB): [0, 233]
|
119 |
Total # Ops : 379
|
120 |
Compute Unit(s) : NPU (379 ops)
|
121 |
```
|
|
|
142 |
torch_model = Model.from_pretrained()
|
143 |
|
144 |
# Device
|
145 |
+
device = hub.Device("Samsung Galaxy S24")
|
146 |
|
147 |
# Trace model
|
148 |
input_shape = torch_model.get_input_spec()
|
|
|
234 |
|
235 |
|
236 |
## License
|
237 |
+
* The license for the original implementation of EfficientViT-b2-cls can be found
|
238 |
+
[here](https://github.com/CVHub520/efficientvit/blob/main/LICENSE).
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|