library_name: pytorch
license: bsd-3-clause
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android
Lightweight-Face-Detection-Quantized: Optimized for Mobile Deployment
face_det_lite_quantized is a face detection model
face_det_lite_quantized is a machine learning model that detect face in the images
This model is an implementation of Lightweight-Face-Detection-Quantized found here.
This repository provides scripts to run Lightweight-Face-Detection-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Model checkpoint: qfd360_sl_model.pt
- Inference latency: RealTime
- Input resolution: 480x640
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Lightweight-Face-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.276 ms | 0 - 9 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.341 ms | 0 - 9 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.so |
Lightweight-Face-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.631 ms | 0 - 8 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.onnx |
Lightweight-Face-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.201 ms | 0 - 26 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.244 ms | 0 - 26 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.so |
Lightweight-Face-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.448 ms | 0 - 28 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.onnx |
Lightweight-Face-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.201 ms | 0 - 19 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.265 ms | 0 - 19 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.407 ms | 0 - 21 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.onnx |
Lightweight-Face-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.798 ms | 0 - 17 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 1.039 ms | 0 - 11 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 6.608 ms | 0 - 3 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.278 ms | 0 - 10 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.339 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 3.129 ms | 0 - 13 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 3.463 ms | 0 - 9 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.28 ms | 0 - 9 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.363 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 0.666 ms | 0 - 19 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 0.994 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.278 ms | 0 - 9 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.336 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 0.587 ms | 0 - 14 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 0.814 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.366 ms | 0 - 20 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.tflite |
Lightweight-Face-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.455 ms | 0 - 24 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.465 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
Lightweight-Face-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.702 ms | 3 - 3 MB | INT8 | NPU | Lightweight-Face-Detection-Quantized.onnx |
Installation
This model can be installed as a Python package via pip.
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.face_det_lite_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.face_det_lite_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.face_det_lite_quantized.export
Profiling Results
------------------------------------------------------------
Lightweight-Face-Detection-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.3
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 90
Compute Unit(s) : NPU (90 ops)
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.face_det_lite_quantized.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.face_det_lite_quantized.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Lightweight-Face-Detection-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Lightweight-Face-Detection-Quantized can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.