library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android
MediaPipe-Face-Detection-Quantized: Optimized for Mobile Deployment
Detect faces and locate facial features in real-time video and image streams
Designed for sub-millisecond processing, this model predicts bounding boxes and pose skeletons (left eye, right eye, nose tip, mouth, left eye tragion, and right eye tragion) of faces in an image.
This model is an implementation of MediaPipe-Face-Detection-Quantized found here.
This repository provides scripts to run MediaPipe-Face-Detection-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Input resolution: 256x256
- Number of output classes: 6
- Number of parameters (MediaPipeFaceDetector): 135K
- Model size (MediaPipeFaceDetector): 255 KB
- Number of parameters (MediaPipeFaceLandmarkDetector): 603K
- Model size (MediaPipeFaceLandmarkDetector): 746 KB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
MediaPipeFaceDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.276 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.302 ms | 0 - 11 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.so |
MediaPipeFaceDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.181 ms | 0 - 32 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.203 ms | 0 - 19 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.so |
MediaPipeFaceDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.199 ms | 0 - 23 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.218 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.681 ms | 0 - 24 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.775 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 4.967 ms | 0 - 5 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.269 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.301 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.273 ms | 0 - 2 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.303 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.275 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.306 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.279 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.302 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | SA8295P ADP | SA8295P | TFLITE | 0.648 ms | 0 - 22 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | SA8295P ADP | SA8295P | QNN | 0.771 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.335 ms | 0 - 34 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.358 ms | 0 - 19 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.424 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.186 ms | 0 - 33 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.224 ms | 0 - 4 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.so |
MediaPipeFaceLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.129 ms | 0 - 27 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.162 ms | 0 - 14 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.so |
MediaPipeFaceLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.118 ms | 0 - 18 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.143 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.398 ms | 0 - 19 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.502 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 2.958 ms | 0 - 6 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.18 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.218 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.184 ms | 0 - 3 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.215 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.176 ms | 0 - 1 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.222 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.183 ms | 0 - 68 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.22 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | SA8295P ADP | SA8295P | TFLITE | 0.479 ms | 0 - 17 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | SA8295P ADP | SA8295P | QNN | 0.624 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.217 ms | 0 - 28 MB | FP16 | NPU | MediaPipe-Face-Detection-Quantized.tflite |
MediaPipeFaceLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.255 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
MediaPipeFaceLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.318 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
Installation
This model can be installed as a Python package via pip.
pip install "qai-hub-models[mediapipe_face_quantized]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.mediapipe_face_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mediapipe_face_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mediapipe_face_quantized.export
Profiling Results
------------------------------------------------------------
MediaPipeFaceDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.3
Estimated peak memory usage (MB): [0, 1]
Total # Ops : 121
Compute Unit(s) : NPU (121 ops)
------------------------------------------------------------
MediaPipeFaceLandmarkDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.2
Estimated peak memory usage (MB): [0, 33]
Total # Ops : 117
Compute Unit(s) : NPU (117 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on MediaPipe-Face-Detection-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of MediaPipe-Face-Detection-Quantized can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.