OpenAI-Clip: Optimized for Mobile Deployment

Multi-modal foundational model for vision and language tasks like image/text similarity and for zero-shot image classification

Contrastive Language-Image Pre-Training (CLIP) uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features can then be used for a variety of zero-shot learning tasks.

This model is an implementation of OpenAI-Clip found here.

This repository provides scripts to run OpenAI-Clip on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Image classification
  • Model Stats:
    • Model checkpoint: ViT-B/16
    • Image input resolution: 224x224
    • Text context length: 77
    • Number of parameters (CLIPTextEncoder): 76.0M
    • Model size (CLIPTextEncoder): 290 MB
    • Number of parameters (CLIPImageEncoder): 115M
    • Model size (CLIPImageEncoder): 437 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
CLIPImageEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 19.929 ms 0 - 34 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 16.659 ms 1 - 3 MB FP16 NPU OpenAI-Clip.so
CLIPImageEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 40.603 ms 0 - 369 MB FP16 NPU OpenAI-Clip.onnx
CLIPImageEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 14.675 ms 0 - 365 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 11.943 ms 1 - 19 MB FP16 NPU OpenAI-Clip.so
CLIPImageEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 30.392 ms 0 - 222 MB FP16 NPU OpenAI-Clip.onnx
CLIPImageEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 14.028 ms 0 - 362 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 8.959 ms 1 - 302 MB FP16 NPU Use Export Script
CLIPImageEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 27.795 ms 1 - 219 MB FP16 NPU OpenAI-Clip.onnx
CLIPImageEncoder SA7255P ADP SA7255P TFLITE 309.047 ms 0 - 362 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder SA7255P ADP SA7255P QNN 257.356 ms 1 - 10 MB FP16 NPU Use Export Script
CLIPImageEncoder SA8255 (Proxy) SA8255P Proxy TFLITE 19.951 ms 0 - 34 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder SA8255 (Proxy) SA8255P Proxy QNN 16.692 ms 1 - 3 MB FP16 NPU Use Export Script
CLIPImageEncoder SA8295P ADP SA8295P TFLITE 24.429 ms 0 - 314 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder SA8295P ADP SA8295P QNN 20.246 ms 1 - 18 MB FP16 NPU Use Export Script
CLIPImageEncoder SA8650 (Proxy) SA8650P Proxy TFLITE 20.34 ms 0 - 36 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder SA8650 (Proxy) SA8650P Proxy QNN 16.699 ms 1 - 3 MB FP16 NPU Use Export Script
CLIPImageEncoder SA8775P ADP SA8775P TFLITE 28.395 ms 0 - 362 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder SA8775P ADP SA8775P QNN 23.499 ms 1 - 10 MB FP16 NPU Use Export Script
CLIPImageEncoder QCS8275 (Proxy) QCS8275 Proxy TFLITE 309.047 ms 0 - 362 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder QCS8275 (Proxy) QCS8275 Proxy QNN 257.356 ms 1 - 10 MB FP16 NPU Use Export Script
CLIPImageEncoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 19.941 ms 0 - 37 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder QCS8550 (Proxy) QCS8550 Proxy QNN 16.579 ms 1 - 3 MB FP16 NPU Use Export Script
CLIPImageEncoder QCS9075 (Proxy) QCS9075 Proxy TFLITE 28.395 ms 0 - 362 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder QCS9075 (Proxy) QCS9075 Proxy QNN 23.499 ms 1 - 10 MB FP16 NPU Use Export Script
CLIPImageEncoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 21.872 ms 0 - 326 MB FP16 NPU OpenAI-Clip.tflite
CLIPImageEncoder QCS8450 (Proxy) QCS8450 Proxy QNN 18.207 ms 1 - 306 MB FP16 NPU Use Export Script
CLIPImageEncoder Snapdragon X Elite CRD Snapdragon® X Elite QNN 17.329 ms 1 - 1 MB FP16 NPU Use Export Script
CLIPImageEncoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 41.047 ms 171 - 171 MB FP16 NPU OpenAI-Clip.onnx
CLIPTextEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 4.467 ms 0 - 17 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 4.03 ms 0 - 2 MB FP16 NPU OpenAI-Clip.so
CLIPTextEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 9.111 ms 0 - 385 MB FP16 NPU OpenAI-Clip.onnx
CLIPTextEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 3.062 ms 0 - 146 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 2.69 ms 0 - 18 MB FP16 NPU OpenAI-Clip.so
CLIPTextEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 6.511 ms 0 - 70 MB FP16 NPU OpenAI-Clip.onnx
CLIPTextEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 2.59 ms 0 - 143 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 2.577 ms 0 - 127 MB FP16 NPU Use Export Script
CLIPTextEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 8.644 ms 0 - 68 MB FP16 NPU OpenAI-Clip.onnx
CLIPTextEncoder SA7255P ADP SA7255P TFLITE 59.152 ms 0 - 139 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder SA7255P ADP SA7255P QNN 49.955 ms 0 - 10 MB FP16 NPU Use Export Script
CLIPTextEncoder SA8255 (Proxy) SA8255P Proxy TFLITE 4.472 ms 0 - 10 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder SA8255 (Proxy) SA8255P Proxy QNN 4.03 ms 0 - 3 MB FP16 NPU Use Export Script
CLIPTextEncoder SA8295P ADP SA8295P TFLITE 5.901 ms 0 - 127 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder SA8295P ADP SA8295P QNN 5.405 ms 0 - 18 MB FP16 NPU Use Export Script
CLIPTextEncoder SA8650 (Proxy) SA8650P Proxy TFLITE 4.488 ms 0 - 13 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder SA8650 (Proxy) SA8650P Proxy QNN 4.066 ms 0 - 2 MB FP16 NPU Use Export Script
CLIPTextEncoder SA8775P ADP SA8775P TFLITE 6.573 ms 0 - 139 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder SA8775P ADP SA8775P QNN 5.754 ms 0 - 10 MB FP16 NPU Use Export Script
CLIPTextEncoder QCS8275 (Proxy) QCS8275 Proxy TFLITE 59.152 ms 0 - 139 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder QCS8275 (Proxy) QCS8275 Proxy QNN 49.955 ms 0 - 10 MB FP16 NPU Use Export Script
CLIPTextEncoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 4.393 ms 0 - 25 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder QCS8550 (Proxy) QCS8550 Proxy QNN 4.029 ms 0 - 3 MB FP16 NPU Use Export Script
CLIPTextEncoder QCS9075 (Proxy) QCS9075 Proxy TFLITE 6.573 ms 0 - 139 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder QCS9075 (Proxy) QCS9075 Proxy QNN 5.754 ms 0 - 10 MB FP16 NPU Use Export Script
CLIPTextEncoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 5.067 ms 0 - 134 MB FP16 NPU OpenAI-Clip.tflite
CLIPTextEncoder QCS8450 (Proxy) QCS8450 Proxy QNN 4.491 ms 0 - 131 MB FP16 NPU Use Export Script
CLIPTextEncoder Snapdragon X Elite CRD Snapdragon® X Elite QNN 4.369 ms 0 - 0 MB FP16 NPU Use Export Script
CLIPTextEncoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 9.289 ms 124 - 124 MB FP16 NPU OpenAI-Clip.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[openai-clip]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.openai_clip.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.openai_clip.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.openai_clip.export
Profiling Results
------------------------------------------------------------
CLIPImageEncoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 19.9                   
Estimated peak memory usage (MB): [0, 34]                
Total # Ops                     : 659                    
Compute Unit(s)                 : NPU (659 ops)          

------------------------------------------------------------
CLIPTextEncoder
Device                          : Samsung Galaxy S23 (13)  
Runtime                         : TFLITE                   
Estimated inference time (ms)   : 4.5                      
Estimated peak memory usage (MB): [0, 17]                  
Total # Ops                     : 660                      
Compute Unit(s)                 : NPU (658 ops) CPU (2 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.openai_clip import Model

# Load the model
model = Model.from_pretrained()
image_encoder_model = model.image_encoder
text_encoder_model = model.text_encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
image_encoder_input_shape = image_encoder_model.get_input_spec()
image_encoder_sample_inputs = image_encoder_model.sample_inputs()

traced_image_encoder_model = torch.jit.trace(image_encoder_model, [torch.tensor(data[0]) for _, data in image_encoder_sample_inputs.items()])

# Compile model on a specific device
image_encoder_compile_job = hub.submit_compile_job(
    model=traced_image_encoder_model ,
    device=device,
    input_specs=image_encoder_model.get_input_spec(),
)

# Get target model to run on-device
image_encoder_target_model = image_encoder_compile_job.get_target_model()
# Trace model
text_encoder_input_shape = text_encoder_model.get_input_spec()
text_encoder_sample_inputs = text_encoder_model.sample_inputs()

traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])

# Compile model on a specific device
text_encoder_compile_job = hub.submit_compile_job(
    model=traced_text_encoder_model ,
    device=device,
    input_specs=text_encoder_model.get_input_spec(),
)

# Get target model to run on-device
text_encoder_target_model = text_encoder_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

image_encoder_profile_job = hub.submit_profile_job(
    model=image_encoder_target_model,
    device=device,
)
text_encoder_profile_job = hub.submit_profile_job(
    model=text_encoder_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

image_encoder_input_data = image_encoder_model.sample_inputs()
image_encoder_inference_job = hub.submit_inference_job(
    model=image_encoder_target_model,
    device=device,
    inputs=image_encoder_input_data,
)
image_encoder_inference_job.download_output_data()
text_encoder_input_data = text_encoder_model.sample_inputs()
text_encoder_inference_job = hub.submit_inference_job(
    model=text_encoder_target_model,
    device=device,
    inputs=text_encoder_input_data,
)
text_encoder_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on OpenAI-Clip's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of OpenAI-Clip can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-classification models for pytorch library.