Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,54 +38,48 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
|---|---|---|---|---|---|---|---|---|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
|
45 |
-
|
|
46 |
-
|
|
47 |
-
|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
| CLIPTextEncoder |
|
63 |
-
| CLIPTextEncoder |
|
64 |
-
| CLIPTextEncoder |
|
65 |
-
| CLIPTextEncoder |
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.427 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
84 |
-
| CLIPImageEncoder | SA8775P ADP | SA8775P | QNN | 29.742 ms | 0 - 5 MB | FP16 | NPU | Use Export Script |
|
85 |
-
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 34.821 ms | 0 - 203 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
86 |
-
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 29.464 ms | 0 - 169 MB | FP16 | NPU | Use Export Script |
|
87 |
-
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 22.2 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
88 |
-
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 160.456 ms | 188 - 188 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
|
89 |
|
90 |
|
91 |
|
@@ -146,23 +140,23 @@ python -m qai_hub_models.models.openai_clip.export
|
|
146 |
```
|
147 |
```
|
148 |
Profiling Results
|
149 |
-
------------------------------------------------------------
|
150 |
-
CLIPTextEncoder
|
151 |
-
Device : Samsung Galaxy S23 (13)
|
152 |
-
Runtime : TFLITE
|
153 |
-
Estimated inference time (ms) : 5.7
|
154 |
-
Estimated peak memory usage (MB): [0, 17]
|
155 |
-
Total # Ops : 660
|
156 |
-
Compute Unit(s) : NPU (658 ops) CPU (2 ops)
|
157 |
-
|
158 |
------------------------------------------------------------
|
159 |
CLIPImageEncoder
|
160 |
Device : Samsung Galaxy S23 (13)
|
161 |
Runtime : TFLITE
|
162 |
-
Estimated inference time (ms) : 34.
|
163 |
-
Estimated peak memory usage (MB): [0,
|
164 |
Total # Ops : 659
|
165 |
Compute Unit(s) : NPU (659 ops)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
```
|
167 |
|
168 |
|
@@ -185,42 +179,42 @@ from qai_hub_models.models.openai_clip import Model
|
|
185 |
|
186 |
# Load the model
|
187 |
model = Model.from_pretrained()
|
188 |
-
text_encoder_model = model.text_encoder
|
189 |
image_encoder_model = model.image_encoder
|
|
|
190 |
|
191 |
# Device
|
192 |
device = hub.Device("Samsung Galaxy S23")
|
193 |
|
194 |
# Trace model
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
|
199 |
|
200 |
# Compile model on a specific device
|
201 |
-
|
202 |
-
model=
|
203 |
device=device,
|
204 |
-
input_specs=
|
205 |
)
|
206 |
|
207 |
# Get target model to run on-device
|
208 |
-
|
209 |
# Trace model
|
210 |
-
|
211 |
-
|
212 |
|
213 |
-
|
214 |
|
215 |
# Compile model on a specific device
|
216 |
-
|
217 |
-
model=
|
218 |
device=device,
|
219 |
-
input_specs=
|
220 |
)
|
221 |
|
222 |
# Get target model to run on-device
|
223 |
-
|
224 |
|
225 |
```
|
226 |
|
@@ -232,14 +226,14 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
232 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
233 |
provided job URL to view a variety of on-device performance metrics.
|
234 |
```python
|
235 |
-
text_encoder_profile_job = hub.submit_profile_job(
|
236 |
-
model=text_encoder_target_model,
|
237 |
-
device=device,
|
238 |
-
)
|
239 |
image_encoder_profile_job = hub.submit_profile_job(
|
240 |
model=image_encoder_target_model,
|
241 |
device=device,
|
242 |
)
|
|
|
|
|
|
|
|
|
243 |
|
244 |
```
|
245 |
|
@@ -248,13 +242,6 @@ Step 3: **Verify on-device accuracy**
|
|
248 |
To verify the accuracy of the model on-device, you can run on-device inference
|
249 |
on sample input data on the same cloud hosted device.
|
250 |
```python
|
251 |
-
text_encoder_input_data = text_encoder_model.sample_inputs()
|
252 |
-
text_encoder_inference_job = hub.submit_inference_job(
|
253 |
-
model=text_encoder_target_model,
|
254 |
-
device=device,
|
255 |
-
inputs=text_encoder_input_data,
|
256 |
-
)
|
257 |
-
text_encoder_inference_job.download_output_data()
|
258 |
image_encoder_input_data = image_encoder_model.sample_inputs()
|
259 |
image_encoder_inference_job = hub.submit_inference_job(
|
260 |
model=image_encoder_target_model,
|
@@ -262,6 +249,13 @@ image_encoder_inference_job = hub.submit_inference_job(
|
|
262 |
inputs=image_encoder_input_data,
|
263 |
)
|
264 |
image_encoder_inference_job.download_output_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
```
|
267 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
38 |
|
39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
|---|---|---|---|---|---|---|---|---|
|
41 |
+
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 34.591 ms | 0 - 57 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
42 |
+
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 26.472 ms | 0 - 55 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
|
43 |
+
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 27.035 ms | 0 - 264 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
44 |
+
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 20.808 ms | 1 - 170 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
|
45 |
+
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 24.249 ms | 0 - 266 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
46 |
+
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 18.669 ms | 0 - 171 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 33.984 ms | 0 - 55 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
48 |
+
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 19.984 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| CLIPImageEncoder | SA7255P ADP | SA7255P | TFLITE | 327.04 ms | 0 - 264 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
50 |
+
| CLIPImageEncoder | SA7255P ADP | SA7255P | QNN | 265.55 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 34.335 ms | 0 - 54 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
52 |
+
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.528 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| CLIPImageEncoder | SA8295P ADP | SA8295P | TFLITE | 40.114 ms | 0 - 200 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
54 |
+
| CLIPImageEncoder | SA8295P ADP | SA8295P | QNN | 30.939 ms | 1 - 7 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 34.062 ms | 0 - 58 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
56 |
+
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.836 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| CLIPImageEncoder | SA8775P ADP | SA8775P | TFLITE | 42.508 ms | 0 - 264 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
58 |
+
| CLIPImageEncoder | SA8775P ADP | SA8775P | QNN | 29.748 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
59 |
+
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 34.902 ms | 0 - 201 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
|
60 |
+
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 28.971 ms | 0 - 169 MB | FP16 | NPU | Use Export Script |
|
61 |
+
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 22.167 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
62 |
+
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.809 ms | 0 - 24 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
63 |
+
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.636 ms | 0 - 18 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
|
64 |
+
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.991 ms | 0 - 83 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
65 |
+
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.281 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
|
66 |
+
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.351 ms | 0 - 83 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
67 |
+
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.197 ms | 0 - 68 MB | FP16 | NPU | Use Export Script |
|
68 |
+
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.613 ms | 0 - 23 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
69 |
+
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.743 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
70 |
+
| CLIPTextEncoder | SA7255P ADP | SA7255P | TFLITE | 61.341 ms | 0 - 82 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
71 |
+
| CLIPTextEncoder | SA7255P ADP | SA7255P | QNN | 51.576 ms | 0 - 11 MB | FP16 | NPU | Use Export Script |
|
72 |
+
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.729 ms | 0 - 23 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
73 |
+
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.772 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
74 |
+
| CLIPTextEncoder | SA8295P ADP | SA8295P | TFLITE | 7.632 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
75 |
+
| CLIPTextEncoder | SA8295P ADP | SA8295P | QNN | 6.53 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
|
76 |
+
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.678 ms | 0 - 19 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
77 |
+
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.872 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
78 |
+
| CLIPTextEncoder | SA8775P ADP | SA8775P | TFLITE | 8.137 ms | 0 - 81 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
79 |
+
| CLIPTextEncoder | SA8775P ADP | SA8775P | QNN | 6.947 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
|
80 |
+
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 6.349 ms | 0 - 74 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
81 |
+
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.399 ms | 0 - 71 MB | FP16 | NPU | Use Export Script |
|
82 |
+
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.08 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
|
|
|
140 |
```
|
141 |
```
|
142 |
Profiling Results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
------------------------------------------------------------
|
144 |
CLIPImageEncoder
|
145 |
Device : Samsung Galaxy S23 (13)
|
146 |
Runtime : TFLITE
|
147 |
+
Estimated inference time (ms) : 34.6
|
148 |
+
Estimated peak memory usage (MB): [0, 57]
|
149 |
Total # Ops : 659
|
150 |
Compute Unit(s) : NPU (659 ops)
|
151 |
+
|
152 |
+
------------------------------------------------------------
|
153 |
+
CLIPTextEncoder
|
154 |
+
Device : Samsung Galaxy S23 (13)
|
155 |
+
Runtime : TFLITE
|
156 |
+
Estimated inference time (ms) : 5.8
|
157 |
+
Estimated peak memory usage (MB): [0, 24]
|
158 |
+
Total # Ops : 660
|
159 |
+
Compute Unit(s) : NPU (658 ops) CPU (2 ops)
|
160 |
```
|
161 |
|
162 |
|
|
|
179 |
|
180 |
# Load the model
|
181 |
model = Model.from_pretrained()
|
|
|
182 |
image_encoder_model = model.image_encoder
|
183 |
+
text_encoder_model = model.text_encoder
|
184 |
|
185 |
# Device
|
186 |
device = hub.Device("Samsung Galaxy S23")
|
187 |
|
188 |
# Trace model
|
189 |
+
image_encoder_input_shape = image_encoder_model.get_input_spec()
|
190 |
+
image_encoder_sample_inputs = image_encoder_model.sample_inputs()
|
191 |
|
192 |
+
traced_image_encoder_model = torch.jit.trace(image_encoder_model, [torch.tensor(data[0]) for _, data in image_encoder_sample_inputs.items()])
|
193 |
|
194 |
# Compile model on a specific device
|
195 |
+
image_encoder_compile_job = hub.submit_compile_job(
|
196 |
+
model=traced_image_encoder_model ,
|
197 |
device=device,
|
198 |
+
input_specs=image_encoder_model.get_input_spec(),
|
199 |
)
|
200 |
|
201 |
# Get target model to run on-device
|
202 |
+
image_encoder_target_model = image_encoder_compile_job.get_target_model()
|
203 |
# Trace model
|
204 |
+
text_encoder_input_shape = text_encoder_model.get_input_spec()
|
205 |
+
text_encoder_sample_inputs = text_encoder_model.sample_inputs()
|
206 |
|
207 |
+
traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])
|
208 |
|
209 |
# Compile model on a specific device
|
210 |
+
text_encoder_compile_job = hub.submit_compile_job(
|
211 |
+
model=traced_text_encoder_model ,
|
212 |
device=device,
|
213 |
+
input_specs=text_encoder_model.get_input_spec(),
|
214 |
)
|
215 |
|
216 |
# Get target model to run on-device
|
217 |
+
text_encoder_target_model = text_encoder_compile_job.get_target_model()
|
218 |
|
219 |
```
|
220 |
|
|
|
226 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
227 |
provided job URL to view a variety of on-device performance metrics.
|
228 |
```python
|
|
|
|
|
|
|
|
|
229 |
image_encoder_profile_job = hub.submit_profile_job(
|
230 |
model=image_encoder_target_model,
|
231 |
device=device,
|
232 |
)
|
233 |
+
text_encoder_profile_job = hub.submit_profile_job(
|
234 |
+
model=text_encoder_target_model,
|
235 |
+
device=device,
|
236 |
+
)
|
237 |
|
238 |
```
|
239 |
|
|
|
242 |
To verify the accuracy of the model on-device, you can run on-device inference
|
243 |
on sample input data on the same cloud hosted device.
|
244 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
image_encoder_input_data = image_encoder_model.sample_inputs()
|
246 |
image_encoder_inference_job = hub.submit_inference_job(
|
247 |
model=image_encoder_target_model,
|
|
|
249 |
inputs=image_encoder_input_data,
|
250 |
)
|
251 |
image_encoder_inference_job.download_output_data()
|
252 |
+
text_encoder_input_data = text_encoder_model.sample_inputs()
|
253 |
+
text_encoder_inference_job = hub.submit_inference_job(
|
254 |
+
model=text_encoder_target_model,
|
255 |
+
device=device,
|
256 |
+
inputs=text_encoder_input_data,
|
257 |
+
)
|
258 |
+
text_encoder_inference_job.download_output_data()
|
259 |
|
260 |
```
|
261 |
With the output of the model, you can compute like PSNR, relative errors or
|