Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,64 +38,35 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
|---|---|---|---|---|---|---|---|---|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
|
45 |
-
|
|
46 |
-
|
|
47 |
-
|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.467 ms | 0 - 17 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
71 |
-
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.03 ms | 0 - 2 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
|
72 |
-
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.111 ms | 0 - 385 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
|
73 |
-
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.062 ms | 0 - 146 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
74 |
-
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.69 ms | 0 - 18 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
|
75 |
-
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.511 ms | 0 - 70 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
|
76 |
-
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.59 ms | 0 - 143 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
77 |
-
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.577 ms | 0 - 127 MB | FP16 | NPU | Use Export Script |
|
78 |
-
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.644 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
|
79 |
-
| CLIPTextEncoder | SA7255P ADP | SA7255P | TFLITE | 59.152 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
80 |
-
| CLIPTextEncoder | SA7255P ADP | SA7255P | QNN | 49.955 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
81 |
-
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.472 ms | 0 - 10 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
82 |
-
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.03 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
|
83 |
-
| CLIPTextEncoder | SA8295P ADP | SA8295P | TFLITE | 5.901 ms | 0 - 127 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
84 |
-
| CLIPTextEncoder | SA8295P ADP | SA8295P | QNN | 5.405 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
|
85 |
-
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.488 ms | 0 - 13 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
86 |
-
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.066 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
|
87 |
-
| CLIPTextEncoder | SA8775P ADP | SA8775P | TFLITE | 6.573 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
88 |
-
| CLIPTextEncoder | SA8775P ADP | SA8775P | QNN | 5.754 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
89 |
-
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 59.152 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
90 |
-
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 49.955 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
91 |
-
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.393 ms | 0 - 25 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
92 |
-
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.029 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
|
93 |
-
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 6.573 ms | 0 - 139 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
94 |
-
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.754 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
95 |
-
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.067 ms | 0 - 134 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
|
96 |
-
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.491 ms | 0 - 131 MB | FP16 | NPU | Use Export Script |
|
97 |
-
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.369 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
|
98 |
-
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.289 ms | 124 - 124 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
|
99 |
|
100 |
|
101 |
|
@@ -156,22 +127,13 @@ python -m qai_hub_models.models.openai_clip.export
|
|
156 |
```
|
157 |
Profiling Results
|
158 |
------------------------------------------------------------
|
159 |
-
|
160 |
-
Device : Samsung Galaxy S23 (13)
|
161 |
-
Runtime : TFLITE
|
162 |
-
Estimated inference time (ms) :
|
163 |
-
Estimated peak memory usage (MB): [0,
|
164 |
-
Total # Ops :
|
165 |
-
Compute Unit(s) : NPU (
|
166 |
-
|
167 |
-
------------------------------------------------------------
|
168 |
-
CLIPTextEncoder
|
169 |
-
Device : Samsung Galaxy S23 (13)
|
170 |
-
Runtime : TFLITE
|
171 |
-
Estimated inference time (ms) : 4.5
|
172 |
-
Estimated peak memory usage (MB): [0, 17]
|
173 |
-
Total # Ops : 660
|
174 |
-
Compute Unit(s) : NPU (658 ops) CPU (2 ops)
|
175 |
```
|
176 |
|
177 |
|
@@ -193,43 +155,26 @@ import qai_hub as hub
|
|
193 |
from qai_hub_models.models.openai_clip import Model
|
194 |
|
195 |
# Load the model
|
196 |
-
|
197 |
-
image_encoder_model = model.image_encoder
|
198 |
-
text_encoder_model = model.text_encoder
|
199 |
|
200 |
# Device
|
201 |
-
device = hub.Device("Samsung Galaxy
|
202 |
|
203 |
# Trace model
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
|
209 |
# Compile model on a specific device
|
210 |
-
|
211 |
-
model=
|
212 |
device=device,
|
213 |
-
input_specs=
|
214 |
)
|
215 |
|
216 |
# Get target model to run on-device
|
217 |
-
|
218 |
-
# Trace model
|
219 |
-
text_encoder_input_shape = text_encoder_model.get_input_spec()
|
220 |
-
text_encoder_sample_inputs = text_encoder_model.sample_inputs()
|
221 |
-
|
222 |
-
traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])
|
223 |
-
|
224 |
-
# Compile model on a specific device
|
225 |
-
text_encoder_compile_job = hub.submit_compile_job(
|
226 |
-
model=traced_text_encoder_model ,
|
227 |
-
device=device,
|
228 |
-
input_specs=text_encoder_model.get_input_spec(),
|
229 |
-
)
|
230 |
-
|
231 |
-
# Get target model to run on-device
|
232 |
-
text_encoder_target_model = text_encoder_compile_job.get_target_model()
|
233 |
|
234 |
```
|
235 |
|
@@ -241,15 +186,11 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
241 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
242 |
provided job URL to view a variety of on-device performance metrics.
|
243 |
```python
|
244 |
-
|
245 |
-
model=
|
246 |
-
device=device,
|
247 |
-
)
|
248 |
-
text_encoder_profile_job = hub.submit_profile_job(
|
249 |
-
model=text_encoder_target_model,
|
250 |
device=device,
|
251 |
)
|
252 |
-
|
253 |
```
|
254 |
|
255 |
Step 3: **Verify on-device accuracy**
|
@@ -257,20 +198,13 @@ Step 3: **Verify on-device accuracy**
|
|
257 |
To verify the accuracy of the model on-device, you can run on-device inference
|
258 |
on sample input data on the same cloud hosted device.
|
259 |
```python
|
260 |
-
|
261 |
-
|
262 |
-
model=
|
263 |
-
device=device,
|
264 |
-
inputs=image_encoder_input_data,
|
265 |
-
)
|
266 |
-
image_encoder_inference_job.download_output_data()
|
267 |
-
text_encoder_input_data = text_encoder_model.sample_inputs()
|
268 |
-
text_encoder_inference_job = hub.submit_inference_job(
|
269 |
-
model=text_encoder_target_model,
|
270 |
device=device,
|
271 |
-
inputs=
|
272 |
)
|
273 |
-
|
274 |
|
275 |
```
|
276 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
38 |
|
39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
|---|---|---|---|---|---|---|---|---|
|
41 |
+
| OpenAI-Clip | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 25.076 ms | 0 - 23 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
42 |
+
| OpenAI-Clip | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.005 ms | 1 - 3 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.so) |
|
43 |
+
| OpenAI-Clip | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 25.599 ms | 0 - 214 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.onnx) |
|
44 |
+
| OpenAI-Clip | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 17.736 ms | 0 - 386 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
45 |
+
| OpenAI-Clip | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 14.891 ms | 1 - 20 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.so) |
|
46 |
+
| OpenAI-Clip | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 18.187 ms | 1 - 476 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.onnx) |
|
47 |
+
| OpenAI-Clip | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 14.708 ms | 0 - 382 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
48 |
+
| OpenAI-Clip | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 11.195 ms | 0 - 386 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| OpenAI-Clip | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 17.476 ms | 1 - 442 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.onnx) |
|
50 |
+
| OpenAI-Clip | SA7255P ADP | SA7255P | TFLITE | 368.416 ms | 0 - 383 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
51 |
+
| OpenAI-Clip | SA7255P ADP | SA7255P | QNN | 306.652 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| OpenAI-Clip | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 25.143 ms | 0 - 30 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
53 |
+
| OpenAI-Clip | SA8255 (Proxy) | SA8255P Proxy | QNN | 21.087 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| OpenAI-Clip | SA8295P ADP | SA8295P | TFLITE | 30.487 ms | 0 - 336 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
55 |
+
| OpenAI-Clip | SA8295P ADP | SA8295P | QNN | 24.931 ms | 1 - 17 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| OpenAI-Clip | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 25.129 ms | 0 - 22 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
57 |
+
| OpenAI-Clip | SA8650 (Proxy) | SA8650P Proxy | QNN | 21.0 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| OpenAI-Clip | SA8775P ADP | SA8775P | TFLITE | 35.055 ms | 0 - 382 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
59 |
+
| OpenAI-Clip | SA8775P ADP | SA8775P | QNN | 28.917 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| OpenAI-Clip | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 368.416 ms | 0 - 383 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
61 |
+
| OpenAI-Clip | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 306.652 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
62 |
+
| OpenAI-Clip | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 24.93 ms | 0 - 21 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
63 |
+
| OpenAI-Clip | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 21.023 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
64 |
+
| OpenAI-Clip | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 35.055 ms | 0 - 382 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
65 |
+
| OpenAI-Clip | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 28.917 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
66 |
+
| OpenAI-Clip | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 26.982 ms | 0 - 349 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.tflite) |
|
67 |
+
| OpenAI-Clip | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 22.296 ms | 1 - 397 MB | FP16 | NPU | Use Export Script |
|
68 |
+
| OpenAI-Clip | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.774 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
69 |
+
| OpenAI-Clip | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 26.6 ms | 293 - 293 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/OpenAI-Clip.onnx) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
|
|
|
127 |
```
|
128 |
Profiling Results
|
129 |
------------------------------------------------------------
|
130 |
+
OpenAI-Clip
|
131 |
+
Device : Samsung Galaxy S23 (13)
|
132 |
+
Runtime : TFLITE
|
133 |
+
Estimated inference time (ms) : 25.1
|
134 |
+
Estimated peak memory usage (MB): [0, 23]
|
135 |
+
Total # Ops : 1320
|
136 |
+
Compute Unit(s) : NPU (1318 ops) CPU (2 ops)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
```
|
138 |
|
139 |
|
|
|
155 |
from qai_hub_models.models.openai_clip import Model
|
156 |
|
157 |
# Load the model
|
158 |
+
torch_model = Model.from_pretrained()
|
|
|
|
|
159 |
|
160 |
# Device
|
161 |
+
device = hub.Device("Samsung Galaxy S24")
|
162 |
|
163 |
# Trace model
|
164 |
+
input_shape = torch_model.get_input_spec()
|
165 |
+
sample_inputs = torch_model.sample_inputs()
|
166 |
|
167 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
168 |
|
169 |
# Compile model on a specific device
|
170 |
+
compile_job = hub.submit_compile_job(
|
171 |
+
model=pt_model,
|
172 |
device=device,
|
173 |
+
input_specs=torch_model.get_input_spec(),
|
174 |
)
|
175 |
|
176 |
# Get target model to run on-device
|
177 |
+
target_model = compile_job.get_target_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
```
|
180 |
|
|
|
186 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
187 |
provided job URL to view a variety of on-device performance metrics.
|
188 |
```python
|
189 |
+
profile_job = hub.submit_profile_job(
|
190 |
+
model=target_model,
|
|
|
|
|
|
|
|
|
191 |
device=device,
|
192 |
)
|
193 |
+
|
194 |
```
|
195 |
|
196 |
Step 3: **Verify on-device accuracy**
|
|
|
198 |
To verify the accuracy of the model on-device, you can run on-device inference
|
199 |
on sample input data on the same cloud hosted device.
|
200 |
```python
|
201 |
+
input_data = torch_model.sample_inputs()
|
202 |
+
inference_job = hub.submit_inference_job(
|
203 |
+
model=target_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
device=device,
|
205 |
+
inputs=input_data,
|
206 |
)
|
207 |
+
on_device_output = inference_job.download_output_data()
|
208 |
|
209 |
```
|
210 |
With the output of the model, you can compute like PSNR, relative errors or
|