Unet-Segmentation / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
38bdeb5 verified
---
library_name: pytorch
license: gpl-3.0
pipeline_tag: image-segmentation
tags:
- backbone
- real_time
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/unet_segmentation/web-assets/model_demo.png)
# Unet-Segmentation: Optimized for Mobile Deployment
## Real-time segmentation optimized for mobile and edge
UNet is a machine learning model that produces a segmentation mask for an image. The most basic use case will label each pixel in the image as being in the foreground or the background. More advanced usage will assign a class label to each pixel. This version of the model was trained on the data from Kaggle's Carvana Image Masking Challenge (see https://www.kaggle.com/c/carvana-image-masking-challenge) and is used for vehicle segmentation.
This model is an implementation of Unet-Segmentation found [here](https://github.com/milesial/Pytorch-UNet).
This repository provides scripts to run Unet-Segmentation on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/unet_segmentation).
### Model Details
- **Model Type:** Semantic segmentation
- **Model Stats:**
- Model checkpoint: unet_carvana_scale1.0_epoch2
- Input resolution: 224x224
- Number of parameters: 31.0M
- Model size: 118 MB
- Number of output classes: 2 (foreground / background)
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 151.304 ms | 6 - 469 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 151.054 ms | 10 - 34 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 154.282 ms | 0 - 1825 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 112.939 ms | 5 - 92 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 110.493 ms | 9 - 96 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 113.478 ms | 1 - 404 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 102.522 ms | 5 - 107 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 89.788 ms | 9 - 111 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 104.69 ms | 13 - 133 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 154.231 ms | 6 - 461 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 136.597 ms | 10 - 12 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA7255P ADP | SA7255P | QNN | 7399.753 ms | 5 - 15 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 149.359 ms | 6 - 246 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 145.443 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8295P ADP | SA8295P | TFLITE | 273.519 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8295P ADP | SA8295P | QNN | 266.203 ms | 3 - 8 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 166.832 ms | 6 - 457 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 145.457 ms | 10 - 11 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | SA8775P ADP | SA8775P | TFLITE | 303.278 ms | 6 - 104 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | SA8775P ADP | SA8775P | QNN | 297.906 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 273.362 ms | 6 - 92 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 306.392 ms | 5 - 96 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.693 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.583 ms | 55 - 55 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.unet_segmentation.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.unet_segmentation.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.unet_segmentation.export
```
```
Profiling Results
------------------------------------------------------------
Unet-Segmentation
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 151.3
Estimated peak memory usage (MB): [6, 469]
Total # Ops : 32
Compute Unit(s) : NPU (32 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/unet_segmentation/qai_hub_models/models/Unet-Segmentation/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.unet_segmentation import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.unet_segmentation.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.unet_segmentation.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Unet-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/unet_segmentation).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Unet-Segmentation can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
## References
* [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
* [Source Model Implementation](https://github.com/milesial/Pytorch-UNet)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).