SentenceTransformer based on indobenchmark/indobert-large-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-large-p2. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
STSB Test
Model | Spearman Correlation |
---|---|
quarkss/indobert-large-stsb | 0.8366 |
quarkss/indobert-base-stsb | 0.8123 |
sentence-transformers/all-MiniLM-L6-v2 | 0.5952 |
indobenchmark/indobert-large-p2 | 0.5673 |
sentence-transformers/all-mpnet-base-v2 | 0.5531 |
sentence-transformers/stsb-bert-base | 0.5349 |
indobenchmark/indobert-base-p2 | 0.5309 |
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-large-p2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("quarkss/indobert-large-stsb")
# Run inference
sentences = [
'Seorang pria sedang berjalan dengan seekor kuda.',
'Seorang pria sedang menuntun seekor kuda dengan tali kekang.',
'Seorang pria sedang menembakkan pistol.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8692 |
spearman_cosine | 0.8677 |
pearson_manhattan | 0.8592 |
spearman_manhattan | 0.8626 |
pearson_euclidean | 0.8599 |
spearman_euclidean | 0.8633 |
pearson_dot | 0.8441 |
spearman_dot | 0.8392 |
pearson_max | 0.8692 |
spearman_max | 0.8677 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8402 |
spearman_cosine | 0.8366 |
pearson_manhattan | 0.8276 |
spearman_manhattan | 0.8316 |
pearson_euclidean | 0.8278 |
spearman_euclidean | 0.8316 |
pearson_dot | 0.817 |
spearman_dot | 0.8083 |
pearson_max | 0.8402 |
spearman_max | 0.8366 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 9.65 tokens
- max: 25 tokens
- min: 6 tokens
- mean: 9.59 tokens
- max: 24 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence1 sentence2 score Sebuah pesawat sedang lepas landas.
Sebuah pesawat terbang sedang lepas landas.
1.0
Seorang pria sedang memainkan seruling besar.
Seorang pria sedang memainkan seruling.
0.76
Seorang pria sedang mengoleskan keju parut di atas pizza.
Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 5warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | spearman_cosine | spearman_max |
---|---|---|---|---|
0.2778 | 100 | 0.0867 | - | - |
0.5556 | 200 | 0.0351 | - | - |
0.8333 | 300 | 0.0303 | - | - |
1.1111 | 400 | 0.0202 | - | - |
1.3889 | 500 | 0.0154 | 0.8612 | - |
1.6667 | 600 | 0.0136 | - | - |
1.9444 | 700 | 0.0145 | - | - |
2.2222 | 800 | 0.0082 | - | - |
2.5 | 900 | 0.0072 | - | - |
2.7778 | 1000 | 0.0068 | 0.8660 | - |
3.0556 | 1100 | 0.0065 | - | - |
3.3333 | 1200 | 0.0044 | - | - |
3.6111 | 1300 | 0.0044 | - | - |
3.8889 | 1400 | 0.0045 | - | - |
4.1667 | 1500 | 0.0038 | 0.8677 | - |
4.4444 | 1600 | 0.0038 | - | - |
4.7222 | 1700 | 0.0035 | - | - |
5.0 | 1800 | 0.0034 | - | 0.8366 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.0.1+cu117
- Accelerate: 0.32.1
- Datasets: 2.17.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for quarkss/indobert-large-stsb
Base model
indobenchmark/indobert-large-p2Dataset used to train quarkss/indobert-large-stsb
Evaluation results
- Pearson Cosine on Unknownself-reported0.869
- Spearman Cosine on Unknownself-reported0.868
- Pearson Manhattan on Unknownself-reported0.859
- Spearman Manhattan on Unknownself-reported0.863
- Pearson Euclidean on Unknownself-reported0.860
- Spearman Euclidean on Unknownself-reported0.863
- Pearson Dot on Unknownself-reported0.844
- Spearman Dot on Unknownself-reported0.839
- Pearson Max on Unknownself-reported0.869
- Spearman Max on Unknownself-reported0.868