Instance Segmentation Example

Content:

PyTorch Version with Accelerate

This model is based on the script run_instance_segmentation_no_trainer.py. The script uses 🤗 Accelerate to write your own training loop in PyTorch and run it on various environments, including CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for mixed precision.

First, configure the environment:

accelerate config

Answer the questions regarding your training environment. Then, run:

accelerate test

This command ensures everything is ready for training. Finally, launch training with:

accelerate launch run_instance_segmentation_no_trainer.py \
    --model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
    --output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \
    --dataset_name qubvel-hf/ade20k-mini \
    --do_reduce_labels \
    --image_height 256 \
    --image_width 256 \
    --num_train_epochs 40 \
    --learning_rate 1e-5 \
    --lr_scheduler_type constant \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --dataloader_num_workers 8 \
    --push_to_hub

Reload and Perform Inference

You can easily load this trained model and perform inference as follows:

import torch
import requests
import matplotlib.pyplot as plt

from PIL import Image
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor

# Load image
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)

# Load model and image processor
device = "cuda"
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer"

model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)

# Run inference on image
inputs = image_processor(images=[image], return_tensors="pt").to(device)
with torch.no_grad():
    outputs = model(**inputs)

# Post-process outputs
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])

print("Mask shape: ", outputs[0]["segmentation"].shape)
print("Mask values: ", outputs[0]["segmentation"].unique())
for segment in outputs[0]["segments_info"]:
    print("Segment: ", segment)
Mask shape:  torch.Size([427, 640])
Mask values:  tensor([-1.,  0.,  1.,  2.,  3.,  4.,  5.,  6.])
Segment:  {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
Segment:  {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
Segment:  {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
Segment:  {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
Segment:  {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
Segment:  {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
Segment:  {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}

Use the following code to visualize the results:

import numpy as np
import matplotlib.pyplot as plt

segmentation = outputs[0]["segmentation"].numpy()

plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np.array(image))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(segmentation)
plt.axis("off")
plt.show()

Result

Downloads last month
14
Safetensors
Model size
47.4M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.