quocanh34's picture
first commit
3773ad2
raw
history blame
14.5 kB
from dataclasses import dataclass, field
from typing import List, Union, Optional, Tuple
from enum import IntEnum
import os
import cv2
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from torchvision.transforms.functional import to_pil_image
# import math
from diffusers import StableDiffusionInpaintPipeline
# from post_process.yoloface.face_detector import YoloDetector
MASK_MERGE_INVERT = ["None", "Merge", "Merge and Invert"]
def adetailer(sd_pipeline, yolodetector, images: list[Image.Image], prompt, negative_prompt, seed=42):
resolution = 512
# ad_model = "post_process/yoloface/weights/yolov5n-face.pt"
processed_input_imgs = []
for input_image in images:
pred = ultralytics_predict(yolodetector_model=yolodetector, image=input_image)
masks = pred_preprocessing(pred)
for i_mask, mask in enumerate(masks):
# # Only inpaint up to n faces
# if i_mask == n:
# break
blurred_mask = mask.filter(ImageFilter.GaussianBlur(8))
crop_region = get_crop_region(np.array(blurred_mask))
crop_region = expand_crop_region(crop_region, resolution, resolution, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
paste_to = (x1, y1, x2-x1, y2-y1)
image_mask = blurred_mask.crop(crop_region)
image_mask = image_mask.resize((resolution, resolution), Image.LANCZOS)
image_masked = Image.new('RGBa', (input_image.width, input_image.height))
image_masked.paste(input_image.convert("RGBA"), mask=ImageOps.invert(blurred_mask.convert('L')))
overlay_image = image_masked.convert('RGBA')
patch_input_img = input_image.crop(crop_region)
patch_input_img = patch_input_img.resize((resolution, resolution), Image.LANCZOS)
processed_input_imgs.append([patch_input_img, paste_to, overlay_image])
denoising_strength = 0.4
pipe = StableDiffusionInpaintPipeline(
vae=sd_pipeline.vae,
text_encoder=sd_pipeline.text_encoder,
tokenizer=sd_pipeline.tokenizer,
unet=sd_pipeline.unet,
scheduler=sd_pipeline.scheduler,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=sd_pipeline.feature_extractor,
).to('cuda')
generator = torch.Generator(device="cuda").manual_seed(seed)
inpaint_images = []
for i in range(len(processed_input_imgs)):
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=[processed_input_imgs[i][0]],
mask_image=image_mask,
num_inference_steps=30,
strength=denoising_strength,
controlnet_conditioning_scale=1.0,
generator=generator
).images[0]
paste_to = processed_input_imgs[i][1]
overlay_image = processed_input_imgs[i][2]
input_image = apply_overlay(out, paste_to, overlay_image)
inpaint_images.append(input_image)
return inpaint_images
def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
return (
int(max(crop_left-pad, 0)),
int(max(crop_top-pad, 0)),
int(min(w - crop_right + pad, w)),
int(min(h - crop_bottom + pad, h))
)
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2-x1))
x1 -= desired_width_diff//2
x2 += desired_width_diff - desired_width_diff//2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
@dataclass
class PredictOutput:
bboxes: List[List[Union[int, float]]] = field(default_factory=list)
masks: List[Image.Image] = field(default_factory=list)
preview: Optional[Image.Image] = None
def create_mask_from_bbox(
bboxes: List[List[float]], shape: Tuple[int, int]
) -> List[Image.Image]:
"""
Parameters
----------
bboxes: List[List[float]]
list of [x1, y1, x2, y2]
bounding boxes
shape: Tuple[int, int]
shape of the image (width, height)
Returns
-------
masks: List[Image.Image]
A list of masks
"""
masks = []
for bbox in bboxes:
mask = Image.new("L", shape, 0)
mask_draw = ImageDraw.Draw(mask)
mask_draw.rectangle(bbox, fill=255)
masks.append(mask)
return masks
def ultralytics_predict(
# model_path: str,
yolodector_model,
image: Image.Image,
confidence: float = 0.5,
device: str = "cuda",
) -> PredictOutput:
# model = YoloDetector(target_size=720, device=device, min_face=50)
bboxes, _ = yolodector_model.predict(np.array(image), conf_thres=confidence, iou_thres=0.5)
masks = create_mask_from_bbox(bboxes[0], image.size)
# model = YOLO(model_path) #old
# pred = model(image, conf=confidence, device=device) #old
# bboxes = pred[0].boxes.xyxy.cpu().numpy() #old
# if bboxes.size == 0:
# return PredictOutput()
# bboxes = bboxes.tolist()
# if pred[0].masks is None: #old
# masks = create_mask_from_bbox(bboxes, image.size) #old
# else: #old
# masks = mask_to_pil(pred[0].masks.data, image.size) #old
# preview = pred[0].plot() #old
# preview = cv2.cvtColor(preview, cv2.COLOR_BGR2RGB) #old
# preview = Image.fromarray(preview) #old
return PredictOutput(bboxes=bboxes[0], masks=masks, preview=image)
def mask_to_pil(masks, shape: Tuple[int, int]) -> List[Image.Image]:
"""
Parameters
----------
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
The device can be CUDA, but `to_pil_image` takes care of that.
shape: Tuple[int, int]
(width, height) of the original image
"""
n = masks.shape[0]
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
class MergeInvert(IntEnum):
NONE = 0
MERGE = 1
MERGE_INVERT = 2
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
"""
The offset function takes an image and offsets it by a given x(→) and y(↑) value.
Parameters
----------
mask: Image.Image
Pass the mask image to the function
x: int
y: int
Returns
-------
PIL.Image.Image
A new image that is offset by x and y
"""
return ImageChops.offset(img, x, -y)
def is_all_black(img: Image.Image) -> bool:
arr = np.array(img)
return cv2.countNonZero(arr) == 0
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.dilate(arr, kernel, iterations=1)
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.erode(arr, kernel, iterations=1)
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
"""
The dilate_erode function takes an image and a value.
If the value is positive, it dilates the image by that amount.
If the value is negative, it erodes the image by that amount.
Parameters
----------
img: PIL.Image.Image
the image to be processed
value: int
kernel size of dilation or erosion
Returns
-------
PIL.Image.Image
The image that has been dilated or eroded
"""
if value == 0:
return img
arr = np.array(img)
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
return Image.fromarray(arr)
def mask_preprocess(
masks: List[Image.Image],
kernel: int = 0,
x_offset: int = 0,
y_offset: int = 0,
merge_invert: Union[int, 'MergeInvert', str] = MergeInvert.NONE,
) -> List[Image.Image]:
"""
The mask_preprocess function takes a list of masks and preprocesses them.
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
Parameters
----------
masks: List[Image.Image]
A list of masks
kernel: int
kernel size of dilation or erosion
x_offset: int
y_offset: int
Returns
-------
List[Image.Image]
A list of processed masks
"""
if not masks:
return []
if x_offset != 0 or y_offset != 0:
masks = [offset(m, x_offset, y_offset) for m in masks]
if kernel != 0:
masks = [dilate_erode(m, kernel) for m in masks]
masks = [m for m in masks if not is_all_black(m)]
return mask_merge_invert(masks, mode=merge_invert)
def mask_merge_invert(
masks: List[Image.Image], mode: Union[int, 'MergeInvert', str]
) -> List[Image.Image]:
if isinstance(mode, str):
mode = MASK_MERGE_INVERT.index(mode)
if mode == MergeInvert.NONE or not masks:
return masks
if mode == MergeInvert.MERGE:
return mask_merge(masks)
if mode == MergeInvert.MERGE_INVERT:
merged = mask_merge(masks)
return mask_invert(merged)
raise RuntimeError
def bbox_area(bbox: List[float]):
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
def is_in_ratio(bbox: List[float], low: float, high: float, orig_area: int) -> bool:
area = bbox_area(bbox)
return low <= area / orig_area <= high
if not pred.bboxes:
return pred
w, h = pred.preview.size
orig_area = w * h
items = len(pred.bboxes)
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
class SortBy(IntEnum):
NONE = 0
LEFT_TO_RIGHT = 1
CENTER_TO_EDGE = 2
AREA = 3
# Bbox sorting
def _key_left_to_right(bbox: List[float]) -> float:
"""
Left to right
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return bbox[0]
def _key_center_to_edge(bbox: List[float], *, center: Tuple[float, float]) -> float:
"""
Center to edge
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
image: Image.Image
the image
"""
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
return dist(center, bbox_center)
def _key_area(bbox: List[float]) -> float:
"""
Large to small
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return -bbox_area(bbox)
def sort_bboxes(
pred: PredictOutput, order: Union[int, 'SortBy'] = SortBy.NONE
) -> PredictOutput:
if order == SortBy.NONE or len(pred.bboxes) <= 1:
return pred
if order == SortBy.LEFT_TO_RIGHT:
key = _key_left_to_right
elif order == SortBy.CENTER_TO_EDGE:
width, height = pred.preview.size
center = (width / 2, height / 2)
key = partial(_key_center_to_edge, center=center)
elif order == SortBy.AREA:
key = _key_area
else:
raise RuntimeError
items = len(pred.bboxes)
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
def filter_k_largest(pred: PredictOutput, k: int = 0) -> PredictOutput:
if not pred.bboxes or k == 0:
return pred
areas = [bbox_area(bbox) for bbox in pred.bboxes]
idx = np.argsort(areas)[-k:]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
def pred_preprocessing(pred: PredictOutput) -> List[Image.Image]:
pred = filter_by_ratio(
pred, low=0.0, high=1.0
)
pred = filter_k_largest(pred, k=0)
pred = sort_bboxes(pred, SortBy.AREA)
return mask_preprocess(
pred.masks,
kernel=4,
x_offset=0,
y_offset=0,
merge_invert="None",
)
def apply_overlay(image, paste_loc, overlay):
if overlay is None:
return image
if paste_loc is not None:
x, y, w, h = paste_loc
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = image.resize((w, h), Image.LANCZOS)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
return image