quocanh34's picture
first commit
3773ad2
raw
history blame
8.64 kB
import sys
sys.path.append('./post_process/yoloface')
import joblib
import os
import torch
import torch.nn as nn
import numpy as np
import cv2
import copy
import scipy
import pathlib
import warnings
from math import sqrt
# sys.path.append(os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))
from models.common import Conv
from models.yolo import Model
from utils.datasets import letterbox
from utils.preprocess_utils import align_faces
from utils.general import check_img_size, non_max_suppression_face, \
scale_coords,scale_coords_landmarks,filter_boxes
class YoloDetector:
def __init__(self, weights_name='yolov5n_state_dict.pt', config_name='yolov5n.yaml', device='cuda:0', min_face=100, target_size=None, frontal=False):
"""
weights_name: name of file with network weights in weights/ folder.
config_name: name of .yaml config with network configuration from models/ folder.
device : pytorch device. Use 'cuda:0', 'cuda:1', e.t.c to use gpu or 'cpu' to use cpu.
min_face : minimal face size in pixels.
target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080. Choose None for original resolution.
frontal : if True tries to filter nonfrontal faces by keypoints location. CURRENTRLY UNSUPPORTED.
"""
self._class_path = pathlib.Path(__file__).parent.absolute()#os.path.dirname(inspect.getfile(self.__class__))
self.device = device
self.target_size = target_size
self.min_face = min_face
self.frontal = frontal
if self.frontal:
print('Currently unavailable')
# self.anti_profile = joblib.load(os.path.join(self._class_path, 'models/anti_profile/anti_profile_xgb_new.pkl'))
self.detector = self.init_detector(weights_name,config_name)
def init_detector(self,weights_name,config_name):
print(self.device)
model_path = os.path.join(self._class_path,'weights/',weights_name)
print(model_path)
config_path = os.path.join(self._class_path,'models/',config_name)
state_dict = torch.load(model_path)
detector = Model(cfg=config_path)
detector.load_state_dict(state_dict)
detector = detector.to(self.device).float().eval()
for m in detector.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
return detector
def _preprocess(self,imgs):
"""
Preprocessing image before passing through the network. Resize and conversion to torch tensor.
"""
pp_imgs = []
for img in imgs:
h0, w0 = img.shape[:2] # orig hw
if self.target_size:
r = self.target_size / min(h0, w0) # resize image to img_size
if r < 1:
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
img = letterbox(img, new_shape=imgsz)[0]
pp_imgs.append(img)
pp_imgs = np.array(pp_imgs)
pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
pp_imgs = pp_imgs.float() # uint8 to fp16/32
pp_imgs /= 255.0 # 0 - 255 to 0.0 - 1.0
return pp_imgs
def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
"""
Postprocessing of raw pytorch model output.
Returns:
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
"""
bboxes = [[] for i in range(len(origimgs))]
landmarks = [[] for i in range(len(origimgs))]
pred = non_max_suppression_face(pred, conf_thres, iou_thres)
for i in range(len(origimgs)):
img_shape = origimgs[i].shape
h,w = img_shape[:2]
gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
det = pred[i].cpu()
scaled_bboxes = scale_coords(imgs[i].shape[1:], det[:, :4], img_shape).round()
scaled_cords = scale_coords_landmarks(imgs[i].shape[1:], det[:, 5:15], img_shape).round()
for j in range(det.size()[0]):
box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
box = list(map(int,[box[0]*w,box[1]*h,box[2]*w,box[3]*h]))
if box[3] - box[1] < self.min_face:
continue
lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
lm = list(map(int,[i*w if j%2==0 else i*h for j,i in enumerate(lm)]))
lm = [lm[i:i+2] for i in range(0,len(lm),2)]
bboxes[i].append(box)
landmarks[i].append(lm)
return bboxes, landmarks
def get_frontal_predict(self, box, points):
'''
Make a decision whether face is frontal by keypoints.
Returns:
True if face is frontal, False otherwise.
'''
cur_points = points.astype('int')
x1, y1, x2, y2 = box[0:4]
w = x2-x1
h = y2-y1
diag = sqrt(w**2+h**2)
dist = scipy.spatial.distance.pdist(cur_points)/diag
predict = self.anti_profile.predict(dist.reshape(1, -1))[0]
if predict == 0:
return True
else:
return False
def align(self, img, points):
'''
Align faces, found on images.
Params:
img: Single image, used in predict method.
points: list of keypoints, produced in predict method.
Returns:
crops: list of croped and aligned faces of shape (112,112,3).
'''
crops = [align_faces(img,landmark=np.array(i)) for i in points]
return crops
def predict(self, imgs, conf_thres = 0.3, iou_thres = 0.5):
'''
Get bbox coordinates and keypoints of faces on original image.
Params:
imgs: image or list of images to detect faces on
conf_thres: confidence threshold for each prediction
iou_thres: threshold for NMS (filtering of intersecting bboxes)
Returns:
bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
'''
one_by_one = False
# Pass input images through face detector
if type(imgs) != list:
images = [imgs]
else:
images = imgs
one_by_one = False
shapes = {arr.shape for arr in images}
if len(shapes) != 1:
one_by_one = True
warnings.warn(f"Can't use batch predict due to different shapes of input images. Using one by one strategy.")
origimgs = copy.deepcopy(images)
if one_by_one:
images = [self._preprocess([img]) for img in images]
bboxes = [[] for i in range(len(origimgs))]
points = [[] for i in range(len(origimgs))]
for num, img in enumerate(images):
with torch.inference_mode(): # change this with torch.no_grad() for pytorch <1.8 compatibility
single_pred = self.detector(img)[0]
print(single_pred.shape)
bb, pt = self._postprocess(img, [origimgs[num]], single_pred, conf_thres, iou_thres)
#print(bb)
bboxes[num] = bb[0]
points[num] = pt[0]
else:
images = self._preprocess(images)
with torch.inference_mode(): # change this with torch.no_grad() for pytorch <1.8 compatibility
pred = self.detector(images)[0]
bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
return bboxes, points
def __call__(self,*args):
return self.predict(*args)
if __name__=='__main__':
a = YoloDetector()