|
--- |
|
license: other |
|
base_model: "stabilityai/stable-diffusion-3.5-large" |
|
tags: |
|
- sd3 |
|
- sd3-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- safe-for-work |
|
- lora |
|
- template:sd-lora |
|
- lycoris |
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'ps2 graphics, liminal, hotel lobby, videogame screenshot' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
--- |
|
|
|
# subliminal_large |
|
|
|
This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large). |
|
|
|
|
|
The main validation prompt used during training was: |
|
|
|
|
|
|
|
``` |
|
ps2 graphics, liminal, hotel lobby, videogame screenshot |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `5.0` |
|
- CFG Rescale: `0.0` |
|
- Steps: `20` |
|
- Sampler: `None` |
|
- Seed: `42` |
|
- Resolution: `1024x1024` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 2 |
|
- Training steps: 5500 |
|
- Learning rate: 0.0001 |
|
- Max grad norm: 0.01 |
|
- Effective batch size: 1 |
|
- Micro-batch size: 1 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Prediction type: flow-matching |
|
- Rescaled betas zero SNR: False |
|
- Optimizer: adamw_bf16 |
|
- Precision: Pure BF16 |
|
- Quantised: Yes: int8-quanto |
|
- Xformers: Not used |
|
- LyCORIS Config: |
|
```json |
|
{ |
|
"algo": "lora", |
|
"multiplier": 1.0, |
|
"linear_dim": 64, |
|
"linear_alpha": 32, |
|
"apply_preset": { |
|
"target_module": [ |
|
"Attention", |
|
"FeedForward" |
|
], |
|
"module_algo_map": { |
|
"Attention": { |
|
"factor": 16 |
|
}, |
|
"FeedForward": { |
|
"factor": 8 |
|
} |
|
} |
|
} |
|
} |
|
``` |
|
|
|
## Datasets |
|
|
|
### ps2_subliminal-512 |
|
- Repeats: 10 |
|
- Total number of images: 55 |
|
- Total number of aspect buckets: 2 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### ps2_subliminal-1024 |
|
- Repeats: 10 |
|
- Total number of images: 55 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### ps2_subliminal-512-crop |
|
- Repeats: 10 |
|
- Total number of images: 55 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: True |
|
- Crop style: random |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
### ps2_subliminal-1024-crop |
|
- Repeats: 10 |
|
- Total number of images: 55 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: True |
|
- Crop style: random |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from lycoris import create_lycoris_from_weights |
|
|
|
model_id = 'stabilityai/stable-diffusion-3.5-large' |
|
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually |
|
lora_scale = 1.0 |
|
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer) |
|
wrapper.merge_to() |
|
|
|
prompt = "ps2 graphics, liminal, hotel lobby, videogame screenshot" |
|
negative_prompt = 'blurry, cropped, ugly' |
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=20, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1024, |
|
height=1024, |
|
guidance_scale=5.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|