|
import torch |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
from typing import List |
|
import os |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
self.model_path = os.path.join(path, '.') |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) |
|
self.model = AutoModel.from_pretrained(self.model_path) |
|
self.model.eval() |
|
self.model = self.model.to(device) |
|
|
|
def __call__(self, inputs: str) -> List[float]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing : |
|
- "feature_vector": A list of floats corresponding to the image embedding. |
|
""" |
|
|
|
batch_dict = self.tokenizer([inputs], max_length=512, |
|
padding=True, truncation=True, return_tensors='pt') |
|
with torch.no_grad(): |
|
outputs = self.model(**batch_dict) |
|
embeddings = self.average_pool(outputs.last_hidden_state, |
|
batch_dict['attention_mask']) |
|
return embeddings.cpu().numpy().tolist() |
|
|
|
def average_pool(self, last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill( |
|
~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|