|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Florence-2. |
|
""" |
|
|
|
import re |
|
import logging |
|
from typing import List, Optional, Union |
|
import numpy as np |
|
|
|
import torch |
|
import PIL |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import ( |
|
PaddingStrategy, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers.utils import TensorType |
|
import re |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Florence2Processor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "CLIPImageProcessor" |
|
tokenizer_class = ("BartTokenizer", "BartTokenizerFast") |
|
|
|
def __init__( |
|
self, |
|
image_processor=None, |
|
tokenizer=None, |
|
): |
|
if image_processor is None: |
|
raise ValueError("You need to specify an `image_processor`.") |
|
if tokenizer is None: |
|
raise ValueError("You need to specify a `tokenizer`.") |
|
if not hasattr(image_processor, "image_seq_length"): |
|
raise ValueError("Image processor is missing an `image_seq_length` attribute.") |
|
|
|
self.image_seq_length = image_processor.image_seq_length |
|
|
|
tokens_to_add = { |
|
'additional_special_tokens': \ |
|
tokenizer.additional_special_tokens + \ |
|
['<od>', '</od>', '<ocr>', '</ocr>'] + \ |
|
[f'<loc_{x}>' for x in range(1000)] + \ |
|
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>'] + \ |
|
['<panel>', '<text>', '<character>', '<tail>'] |
|
} |
|
tokenizer.add_special_tokens(tokens_to_add) |
|
self.decoder_start_token_id = 2 |
|
|
|
self.box_quantizer = BoxQuantizer( |
|
mode='floor', |
|
bins=(1000, 1000), |
|
) |
|
|
|
super().__init__(image_processor, tokenizer) |
|
|
|
def __call__( |
|
self, |
|
batch_input_text: List[TextInput] = None, |
|
batch_input_list_of_list_of_bboxes: List[List[List[List[float]]]] = None, |
|
batch_output_text: List[TextInput] = None, |
|
batch_output_list_of_list_of_bboxes: List[List[List[List[float]]]] = None, |
|
batch_images: ImageInput = None, |
|
batch_character_cluster_labels = None, |
|
batch_text_character_association_labels = None, |
|
batch_text_tail_association_labels = None, |
|
batch_is_essential_text_labels = None, |
|
batch_tail_character_association_labels = None, |
|
padding: Union[bool, str, PaddingStrategy] = None, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_input_length_including_image_tokens=None, |
|
max_output_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
do_resize: bool = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
data_format: Optional["ChannelDimension"] = "channels_first", |
|
input_data_format: Optional[ |
|
Union[str, "ChannelDimension"] |
|
] = None, |
|
resample: "PILImageResampling" = None, |
|
do_convert_rgb: bool = None, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
) -> BatchFeature: |
|
|
|
assert batch_images is not None, "`batch_images` are expected as arguments to a `Florence2Processor` instance." |
|
assert batch_input_text is not None, "`batch_input_text` are expected as arguments to a `Florence2Processor` instance." |
|
if batch_input_list_of_list_of_bboxes is None: |
|
batch_input_list_of_list_of_bboxes = [[] for _ in range(len(batch_input_text))] |
|
assert len(batch_input_text) == len(batch_input_list_of_list_of_bboxes) == len(batch_images), "`batch_input_text`, `batch_input_list_of_list_of_bboxes` and `batch_images` have different lengths." |
|
if batch_output_text is None: |
|
assert batch_output_list_of_list_of_bboxes is None, "`batch_output_text` and `batch_output_list_of_list_of_bboxes` should be provided together." |
|
else: |
|
if batch_output_list_of_list_of_bboxes is None: |
|
batch_output_list_of_list_of_bboxes = [[] for _ in range(len(batch_output_text))] |
|
assert len(batch_output_text) == len(batch_output_list_of_list_of_bboxes) == len(batch_images), "`batch_output_text`, `batch_output_list_of_list_of_bboxes` and `batch_images` have different lengths." |
|
|
|
max_input_length = max_input_length_including_image_tokens - self.image_seq_length if max_input_length_including_image_tokens is not None else None |
|
batch_input_texts = [self._format_text_with_bboxes(text, list_of_list_of_bboxes, image) for text, list_of_list_of_bboxes, image in zip(batch_input_text, batch_input_list_of_list_of_bboxes, batch_images)] |
|
inputs = self.tokenizer( |
|
batch_input_texts, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
truncation=False, |
|
) |
|
|
|
if inputs["input_ids"].shape[1] > max_input_length: |
|
inputs["input_ids"] = inputs["input_ids"][:, :max_input_length] |
|
inputs["attention_mask"] = inputs["attention_mask"][:, :max_input_length] |
|
|
|
if batch_output_text is not None: |
|
batch_output_texts = [self._format_text_with_bboxes(text, list_of_list_of_bboxes, image) for text, list_of_list_of_bboxes, image in zip(batch_output_text, batch_output_list_of_list_of_bboxes, batch_images)] |
|
decoder_inputs = self.tokenizer( |
|
batch_output_texts, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
truncation=False, |
|
) |
|
|
|
if decoder_inputs["input_ids"].shape[1] > max_output_length: |
|
decoder_inputs["input_ids"] = decoder_inputs["input_ids"][:, :max_output_length] |
|
decoder_inputs["attention_mask"] = decoder_inputs["attention_mask"][:, :max_output_length] |
|
|
|
|
|
pixel_values = self.image_processor( |
|
batch_images, |
|
do_resize=do_resize, |
|
do_normalize=do_normalize, |
|
return_tensors=return_tensors, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
input_data_format=input_data_format, |
|
data_format=data_format, |
|
resample=resample, |
|
do_convert_rgb=do_convert_rgb, |
|
)["pixel_values"] |
|
|
|
if dtype is not None: |
|
pixel_values = pixel_values.to(dtype) |
|
|
|
return_data = {**inputs, "pixel_values": pixel_values} |
|
|
|
if batch_output_text is not None: |
|
labels = decoder_inputs["input_ids"] |
|
decoder_input_ids = labels.new_zeros(labels.shape) |
|
decoder_input_ids[:, 1:] = labels[:, :-1].clone() |
|
decoder_input_ids[:, 0] = self.decoder_start_token_id |
|
decoder_attention_mask = decoder_inputs["attention_mask"].new_ones(decoder_input_ids.shape) |
|
decoder_attention_mask[:, 1:] = decoder_inputs["attention_mask"][:, :-1].clone() |
|
|
|
labels.masked_fill_(labels == self.tokenizer.pad_token_id, -100) |
|
return_data.update({ |
|
"labels": labels, |
|
"decoder_input_ids": decoder_input_ids, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
}) |
|
|
|
if device is not None: |
|
for key, value in return_data.items(): |
|
if isinstance(value, torch.Tensor): |
|
return_data[key] = value.to(device) |
|
|
|
if batch_character_cluster_labels is not None: |
|
return_data["character_cluster_labels"] = batch_character_cluster_labels |
|
if batch_text_character_association_labels is not None: |
|
return_data["text_character_association_labels"] = batch_text_character_association_labels |
|
if batch_text_tail_association_labels is not None: |
|
return_data["text_tail_association_labels"] = batch_text_tail_association_labels |
|
if batch_is_essential_text_labels is not None: |
|
return_data["is_essential_text_labels"] = batch_is_essential_text_labels |
|
if batch_tail_character_association_labels is not None: |
|
return_data["tail_character_association_labels"] = batch_tail_character_association_labels |
|
|
|
return_data["tokenizer"] = self.tokenizer |
|
return BatchFeature(data=return_data) |
|
|
|
def cleanup_generated_text(self, generated_text): |
|
return generated_text.replace("<s>", "").replace("</s>", "").replace("<pad>", "") |
|
|
|
def postprocess_output(self, generated_ids, images): |
|
generated_ids.masked_fill_(generated_ids == -100, self.tokenizer.pad_token_id) |
|
batch_decoded_texts = self.batch_decode(generated_ids, skip_special_tokens=False) |
|
batch_decoded_texts = [self.cleanup_generated_text(text) for text in batch_decoded_texts] |
|
batch_list_of_list_of_bboxes = [] |
|
batch_indices_of_bboxes_in_new_string = [] |
|
batch_new_texts = [] |
|
for text, image in zip(batch_decoded_texts, images): |
|
size_wh = self._get_image_size_wh(image) |
|
parsed_text, list_of_stringified_bboxes, start_end_in_new_string = self._parse_text_with_bboxes(text) |
|
list_of_list_of_bboxes = [self.box_quantizer.dequantize_from_stringified_bboxes(stringified_bbox, size_wh) for stringified_bbox in list_of_stringified_bboxes] |
|
batch_list_of_list_of_bboxes.append(list_of_list_of_bboxes) |
|
batch_indices_of_bboxes_in_new_string.append(start_end_in_new_string) |
|
batch_new_texts.append(parsed_text) |
|
return batch_new_texts, batch_list_of_list_of_bboxes, batch_indices_of_bboxes_in_new_string |
|
|
|
def _parse_text_with_bboxes(self, text): |
|
loc_pattern = r'((?:<loc_\d+>){4}(?:,(?:<loc_\d+>){4})*)' |
|
grounding_pattern = r'<grounding>(.*?)</grounding>' + loc_pattern |
|
|
|
list_of_stringified_bboxes = [] |
|
start_end_in_new_string = [] |
|
new_text = "" |
|
original_pos = 0 |
|
new_pos = 0 |
|
|
|
for match in re.finditer(grounding_pattern + '|' + loc_pattern, text): |
|
|
|
new_text += text[original_pos:match.start()] |
|
new_pos += match.start() - original_pos |
|
|
|
if match.group(0).startswith('<grounding>'): |
|
|
|
grounding_text = match.group(1) |
|
locs = match.group(2) |
|
new_text += grounding_text |
|
list_of_stringified_bboxes.append(locs) |
|
start_end_in_new_string.append((new_pos, new_pos + len(grounding_text))) |
|
new_pos += len(grounding_text) |
|
else: |
|
|
|
locs = match.group(0) |
|
replacement = "" |
|
new_text += replacement |
|
list_of_stringified_bboxes.append(locs) |
|
start_end_in_new_string.append((new_pos, new_pos + len(replacement))) |
|
new_pos += len(replacement) |
|
|
|
original_pos = match.end() |
|
|
|
|
|
new_text += text[original_pos:] |
|
|
|
return new_text, list_of_stringified_bboxes, start_end_in_new_string |
|
|
|
def _format_text_with_bboxes(self, text, list_of_list_of_bboxes, image): |
|
size_wh = self._get_image_size_wh(image) |
|
quantized_bbox_lists = [] |
|
for list_of_bboxes in list_of_list_of_bboxes: |
|
quantized_bboxes = self.box_quantizer.quantize(list_of_bboxes, size_wh=size_wh) |
|
stringified_bboxes = [f"<loc_{x1}><loc_{y1}><loc_{x2}><loc_{y2}>" for x1, y1, x2, y2 in quantized_bboxes] |
|
stringified_bboxes = ",".join(stringified_bboxes) |
|
quantized_bbox_lists.append(stringified_bboxes) |
|
return text.format(*quantized_bbox_lists) |
|
|
|
def _get_image_size_wh(self, image): |
|
|
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.dim() == 3: |
|
size_wh = (image.shape[2], image.shape[1]) |
|
elif image.dim() == 4: |
|
size_wh = (image.shape[3], image.shape[2]) |
|
else: |
|
raise ValueError("Unsupported tensor dimensions") |
|
elif isinstance(image, np.ndarray): |
|
|
|
if image.ndim == 2: |
|
size_wh = (image.shape[1], image.shape[0]) |
|
elif image.ndim == 3: |
|
size_wh = (image.shape[1], image.shape[0]) |
|
else: |
|
raise ValueError("Unsupported array dimensions") |
|
elif isinstance(image, PIL.Image.Image): |
|
|
|
size_wh = image.size |
|
else: |
|
raise TypeError("Unsupported image type") |
|
return size_wh |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
class BoxQuantizer(object): |
|
def __init__(self, mode, bins): |
|
self.mode = mode |
|
self.bins = bins |
|
|
|
def quantize(self, boxes, size_wh): |
|
if not isinstance(boxes, torch.Tensor): |
|
boxes = torch.tensor(boxes) |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size_wh |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
quantized_xmin = ( |
|
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1) |
|
quantized_ymin = ( |
|
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1) |
|
quantized_xmax = ( |
|
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1) |
|
quantized_ymax = ( |
|
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1) |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
quantized_boxes = torch.cat( |
|
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1 |
|
).int() |
|
|
|
return quantized_boxes.tolist() |
|
|
|
def dequantize_from_stringified_bboxes(self, stringified_bboxes, size_wh): |
|
bboxes = stringified_bboxes.split(',') |
|
|
|
def parse_bbox(bbox_string): |
|
pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>' |
|
match = re.match(pattern, bbox_string) |
|
if match: |
|
return [int(match.group(i)) for i in range(1, 5)] |
|
else: |
|
raise ValueError(f"Invalid bbox string format: {bbox_string}") |
|
|
|
parsed_bboxes = [parse_bbox(bbox) for bbox in bboxes] |
|
return self.dequantize(parsed_bboxes, size_wh).tolist() |
|
|
|
def dequantize(self, boxes: torch.Tensor, size): |
|
if not isinstance(boxes, torch.Tensor): |
|
boxes = torch.tensor(boxes) |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
|
|
dequantized_xmin = (xmin + 0.5) * size_per_bin_w |
|
dequantized_ymin = (ymin + 0.5) * size_per_bin_h |
|
dequantized_xmax = (xmax + 0.5) * size_per_bin_w |
|
dequantized_ymax = (ymax + 0.5) * size_per_bin_h |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
dequantized_boxes = torch.cat( |
|
(dequantized_xmin, dequantized_ymin, |
|
dequantized_xmax, dequantized_ymax), dim=-1 |
|
) |
|
|
|
return dequantized_boxes |