Stable Diffusion model, fine-tuned for generating images of people with their thumbs up.

How to use it:


from diffusers import StableDiffusionPipeline
import torch
from torchmetrics.functional.multimodal import clip_score
from functools import partial

model_ckpt = "raghav-gaggar/stable-diffusion-thumbs-up"
sd_pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16).to("cuda")

prompts = [
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
    "thumbs up",
]

images = sd_pipeline(prompts, num_images_per_prompt=1, output_type="numpy").images
print(images.shape)

clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")

def calculate_clip_score(images, prompts):
    images_int = (images * 255).astype("uint8")
    clip_score = clip_score_fn(torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts).detach()
    return round(float(clip_score), 4)


sd_clip_score = calculate_clip_score(images, prompts)
print(f"CLIP score: {sd_clip_score}")

Sample pictures of this concept:

0 1 2 3

Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.