Stable Diffusion model, fine-tuned for generating images of people with their thumbs up.
How to use it:
from diffusers import StableDiffusionPipeline
import torch
from torchmetrics.functional.multimodal import clip_score
from functools import partial
model_ckpt = "raghav-gaggar/stable-diffusion-thumbs-up"
sd_pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16).to("cuda")
prompts = [
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
"thumbs up",
]
images = sd_pipeline(prompts, num_images_per_prompt=1, output_type="numpy").images
print(images.shape)
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")
def calculate_clip_score(images, prompts):
images_int = (images * 255).astype("uint8")
clip_score = clip_score_fn(torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts).detach()
return round(float(clip_score), 4)
sd_clip_score = calculate_clip_score(images, prompts)
print(f"CLIP score: {sd_clip_score}")
Sample pictures of this concept:
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.