Model Card for raicrits/newsClassifier_v1

This model analyses the input text and provides the class the text belongs to among the follofing ones:

0"sport"

1"giustizia-criminalita-sicurezza"

2"editoria-stampa-mass_media"

3"lavoro-previdenza"

4"trasporti"

5"cultura-scienze_umane"

6"esteri"

7"istruzione-formazione"

8"industria-impresa-produzione"

9"vita_e_cultura_religiosa"

10"sanita-salute"

11"economia-credito-finanza"

12"musica_e_spettacolo"

13"cronaca"

14"ambiente-natura-territorio"

15"politica-partiti-istituzioni-sindacati"

16"avvenimenti-celebrazioni-eventi_storici"

17"consumi-servizi"

18"individuo-famiglia-associazioni-societa"

19"commercio"

20"scienze-tecnologie"

21"pubblica_amministrazione-enti_locali"

22"tempo_libero"

23"arte-artigianato"

24"usi_e_costumi"

25"beni_culturali"

26"agricoltura-zootecnia"

Model Details

Model Description

Model Sources [optional]

  • Repository: N/A
  • Paper [optional]: N/A
  • Demo [optional]: N/A

Uses

The model should be used giving a short paragraph of text in Italian as input about which it is requested to get the most probable class.

Direct Use

TBA

Out-of-Scope Use

The model should not be used as a general purpose classifier, i.e. on text which is not originated from news programme transcription or siilar content.

Bias, Risks, and Limitations

The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind of topics included in the dataset.

How to Get Started with the Model

Use the code below to get started with the model.

TBA

Training Details

Training Data

TBA

Training Procedure

Preprocessing [optional]

TBA

Training Hyperparameters

  • Training regime: Mixed Precision

Evaluation

TBA

Testing Data, Factors & Metrics

Testing Data

TBA

Metrics

TBA

Results

TBA

Summary

TBA

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: 2 NVIDIA A100/40Gb
  • Hours used: 2
  • Cloud Provider: Private Infrastructure
  • Carbon Emitted: 0.22 kg CO2 eq.

Glossary [optional]

TBA

More Information [optional]

TBA

Model Card Authors [optional]

Alberto Messina

Model Card Contact

[email protected]

Downloads last month
67
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.