{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78427b17d900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78427b17d990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78427b17da20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78427b17dab0>", "_build": "<function ActorCriticPolicy._build at 0x78427b17db40>", "forward": "<function ActorCriticPolicy.forward at 0x78427b17dbd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78427b17dc60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78427b17dcf0>", "_predict": "<function ActorCriticPolicy._predict at 0x78427b17dd80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78427b17de10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78427b17dea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78427b17df30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78427b10d940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727141036908357531, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B9D3WBr0+XAkFvp06aL5zExM9Fq0tPQAAAAAAAAAA2iOyPgLmGD94Lw49CvK+vln5HD5GQ9W9AAAAAAAAAAAtiI4++qsxPmEynL6k1Ii+nAAxPXqFG70AAAAAAAAAADNHRLxcy0+6cmPyvBYgvrh6m0i7E/srOAAAgD8AAIA/M0vivMNBYLoKV5E3fAFlMlDpbjp9KKq2AACAPwAAgD8zVJ+8PjscP6l6ozy/DpG+iMX3u9oqBD0AAAAAAAAAAK18LL6kcu4+sNxuPsuOk75GrXg9VwwkPAAAAAAAAAAADWmcPRHuQj/D7gA+R0qpvlWn9Ty2lNQ9AAAAAAAAAAAzH948KQw1uihV6rpi3GI11kvAuwmHBzoAAIA/AACAP42PsL3JO5g/cBYqvktpzL4lzOG9HozRvQAAAAAAAAAAvT+kPri+sT6Q85i+hqObvn3qTT2aPIo9AAAAAAAAAAANV0e+8hV4P5UFXj3DHcy+U4EBvl0uMz4AAAAAAAAAADPn0TtGxVw/gPhlPZMCir5i90m9vx6lvAAAAAAAAAAA2qa5PYVjh7myndo6LQajNUhWsrno9v+5AAAAAAAAgD/GEew+/rddPy2dWj7n7AC/u8ixPjZB4b0AAAAAAAAAAFrwpD3EpXQ+BeiKvWSQXL6BadC7NlUxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6GJz1bqyKMAWyUTaMBjAF0lEdAm3TiILw4KnV9lChoBkdAcGsd7fHgg2gHTYQBaAhHQJt1xHskY411fZQoaAZHQGVC2QGOdXloB03oA2gIR0CbduUCaJAMdX2UKGgGR0Bwr73i704BaAdN1AFoCEdAm4tRnzxwynV9lChoBkdAcELKsMiKSGgHTUoBaAhHQJuLnXpW3jN1fZQoaAZHQHLfKN6w+t9oB02aA2gIR0CbjEFUyYXwdX2UKGgGR0ByHq8PFvQ4aAdNRwFoCEdAm4x9BSk0rXV9lChoBkdAbXtA44p+dGgHTUsBaAhHQJuMoa99MK11fZQoaAZHQHDfZ/LDAJtoB01RAWgIR0CbjTERradudX2UKGgGR0BxYWzposZpaAdN+AJoCEdAm43Lb5/LDHV9lChoBkdAcJPlS0jTrmgHTR0CaAhHQJuN/aTOgQJ1fZQoaAZHQHConTRYzSFoB00rAWgIR0Cbkbh7E5yVdX2UKGgGR0BtmfxnWattaAdNSQNoCEdAm5SDImw7knV9lChoBkdAcxAd69kBjmgHTY0BaAhHQJuU2vFFUhp1fZQoaAZHQHNx+3DvVmVoB014AWgIR0CbmJXwb2lEdX2UKGgGR0BvaEdYGMXKaAdNKQFoCEdAm5kaCg9Ne3V9lChoBkdAcZDIFNcnmmgHTU4BaAhHQJubCIfr8ix1fZQoaAZHQGy3eNtIkJNoB00+AWgIR0CbnHRTCLuQdX2UKGgGR0Bwzi6oVEeAaAdN3AFoCEdAm5yhSgoPTXV9lChoBkdAcxh28Zk08GgHTVsBaAhHQJucoXpGFzx1fZQoaAZHQHAh/etSydFoB01nAWgIR0CbnXWHUMG5dX2UKGgGR0Bx87U+cH4XaAdNGgJoCEdAm5212V3Ux3V9lChoBkdAcmd3eN1hcGgHTX0BaAhHQJueHA+IM0B1fZQoaAZHQFIwLmZE2HdoB03oA2gIR0CbnnJO32EkdX2UKGgGR0BuGIhUzbeuaAdNEQFoCEdAm59IsiB5HHV9lChoBkdAb86/h2nsLWgHTY4BaAhHQJuf0JWvKU51fZQoaAZHQHI1Ov+wTuhoB00YAWgIR0CboQvicXnAdX2UKGgGR0Bt94UYbbUPaAdNxQFoCEdAm6GoKD0163V9lChoBkdAcmyxrBTGYWgHTWYDaAhHQJuh13gUDdR1fZQoaAZHQHIPbs4T9KpoB001AWgIR0CbohjrAxi5dX2UKGgGR0BKvsVclgMMaAdL5GgIR0Cbo7LMs6JZdX2UKGgGR0Bte7q4YrJ9aAdNSwFoCEdAm6T5/G2kSHV9lChoBkdAUUBf/m1YyWgHS/JoCEdAm6WhGhEjPnV9lChoBkdAcGb+LFXJYGgHTVYBaAhHQJumfbdrO7h1fZQoaAZHQG4MUSqU/wBoB00XAWgIR0CbpomyxA0LdX2UKGgGR0BwfCkAPuohaAdNPgFoCEdAm6bQ9eQdS3V9lChoBkdAcQUS/j81oGgHTYYBaAhHQJum4vlEJBx1fZQoaAZHQHEVrEDQqqhoB01mAWgIR0Cbqix+rlvIdX2UKGgGR0ByTh/Ue+23aAdNFQFoCEdAm6p3eaa1C3V9lChoBkdAb3SuzyBkJGgHTQ8BaAhHQJurJvS+g151fZQoaAZHQHLYRUFSsKdoB02MAWgIR0CbrJtygf2cdX2UKGgGR0Bvzo+W4Vh1aAdN4AFoCEdAm6zfgWJrL3V9lChoBkdAcjxnYxtYS2gHTYMBaAhHQJus6KuSwGJ1fZQoaAZHQEhB7v5P/JhoB0vfaAhHQJuuoAvL5h11fZQoaAZHQHDOJW/8EV5oB02NAWgIR0Cbr4AcT8HfdX2UKGgGR0Bxrn+cYqG2aAdNFAFoCEdAm6+0HUtqYnV9lChoBkdAcBi0MgEEDGgHTX8BaAhHQJuxlTjvNNd1fZQoaAZHQHJxvb9If8xoB01OAWgIR0Cbw88IRh+fdX2UKGgGR0Bw5N4/u9eyaAdN7QFoCEdAm8UCP+4smXV9lChoBkdAcS0k3S8aoGgHTZ0CaAhHQJvGXIzWPLh1fZQoaAZHQHHMBNyo4uNoB014AWgIR0Cbxl0QK8cudX2UKGgGR0ByRwXk5p8GaAdNHgFoCEdAm8aJrtVrAXV9lChoBkdAcUoWGRFI/mgHTbYBaAhHQJvG5ttQ9A51fZQoaAZHQHDyc8DB/I9oB02GAWgIR0CbxwPzFuNxdX2UKGgGR0BzBCN3np0PaAdNPAFoCEdAm8ii2MKkVXV9lChoBkdAb3uX0Gu9vmgHTVUBaAhHQJvI4vDgqEx1fZQoaAZHQHEb9HYpUgloB00SAWgIR0CbyO3wTdtVdX2UKGgGR0Bv/gB3iaRZaAdNTAFoCEdAm8sw2qDK5nV9lChoBkdAcIl20zCUHWgHTWQBaAhHQJvOf4nF5v91fZQoaAZHQHGoVXNke6toB01VAWgIR0CbzusF+uvEdX2UKGgGR0BKL7XpW3jNaAdLvGgIR0Cbzvf3N9pidX2UKGgGR0ByAnbO/tY0aAdNbwFoCEdAm9AYxtYSx3V9lChoBkdARhgNLDhtL2gHS/NoCEdAm9BeiN83M3V9lChoBkdAN1UcXFcY7GgHS7VoCEdAm9B0K7ZnMHV9lChoBkdAcvJ6IFeOXGgHTRIBaAhHQJvQh19v0iB1fZQoaAZHQHFgOQ+2VmloB01KAWgIR0Cb0Js2vStvdX2UKGgGR0By09ocrAgxaAdNGQFoCEdAm9GW9Htnf3V9lChoBkdAcIdr30wrUmgHTQgCaAhHQJvSLq/ub7V1fZQoaAZHQG9uLW7OE/VoB00/AWgIR0Cb0q0ulGgBdX2UKGgGR0BwuxkFwDNhaAdNOgFoCEdAm9LwHRkVe3V9lChoBkdAc0caUiY9gWgHTZEBaAhHQJvTngsK9f11fZQoaAZHQHD7BQm/nGNoB007AWgIR0Cb1Fxb0OEvdX2UKGgGR0BtL4lv60pmaAdNYAFoCEdAm9U6jN6gNHV9lChoBkdAS9AyRB/qgWgHTQcBaAhHQJvXFeQdS2p1fZQoaAZHQHHhTbvgFX9oB00eAWgIR0Cb15IdELH/dX2UKGgGR0ByHdXJYDDCaAdNOwFoCEdAm9jql1r6+HV9lChoBkdAcTysPJ7swGgHTRIBaAhHQJvY/A+IM0B1fZQoaAZHQG/3Ieo1k2BoB02UAWgIR0Cb2TGYa5wwdX2UKGgGR0Bw9klLOAy3aAdNOQFoCEdAm9ouE25xznV9lChoBkdAcNufFaSs82gHTTYBaAhHQJvaPsPatcR1fZQoaAZHQHKgtKIznA9oB01dAWgIR0Cb24rWRRuTdX2UKGgGR0BwBXCgsbvPaAdNbwFoCEdAm9ucDW9UTHV9lChoBkdAcjZDx9XtB2gHTTUBaAhHQJvb3wtrbg11fZQoaAZHQHLRQA+6iCdoB01QAWgIR0Cb3B3hXKbKdX2UKGgGR0BufkmjTKDDaAdNPAFoCEdAm9ys3Mpw0nV9lChoBkdAcw/HAymALGgHTRwBaAhHQJvdLrs0HhV1fZQoaAZHQHKO7eANG3FoB01FAWgIR0Cb3ZF4LThHdX2UKGgGR0BuaxblijL0aAdNOwFoCEdAm97xE8aGYnV9lChoBkdAcxYpJf6XSmgHTS8BaAhHQJvg1HmRvFZ1fZQoaAZHQHIXchPj4pNoB030AWgIR0Cb4h3PzFuOdX2UKGgGR0ByKBGCqZMMaAdNLwFoCEdAm+IzIV/MGHV9lChoBkdAcXX84PwuumgHTQwBaAhHQJviT531SO11fZQoaAZHQG8IpN9H+ZRoB010AWgIR0Cb4tGR3eN2dX2UKGgGR0BwmdrzoUzsaAdL9WgIR0Cb4xMZxaPkdX2UKGgGR0ByLnzz3AVPaAdNNwFoCEdAm+PXbuc+aHV9lChoBkdAU6m/N7jT8mgHS9hoCEdAm+QoPoV2zXV9lChoBkdAcL26T4cm0GgHTW8BaAhHQJvkaQmu1Wt1fZQoaAZHQHGoauW8h9toB00lAWgIR0Cb5JaisXBQdX2UKGgGR0Bt6Rj4HoovaAdNHQFoCEdAm+T1tTDO1XV9lChoBkdAbul9LpRoAWgHTTkBaAhHQJvlghC+lCV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |