STS-Lora-Fine-Tuning-Capstone-Deberta-old-model-pipe-test_augmentation

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2431
  • Accuracy: 0.4627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 360 1.7500 0.2429
1.7474 2.0 720 1.7255 0.2451
1.681 3.0 1080 1.6291 0.3332
1.681 4.0 1440 1.4764 0.4130
1.5419 5.0 1800 1.4165 0.4159
1.4014 6.0 2160 1.3548 0.4336
1.3269 7.0 2520 1.3122 0.4456
1.3269 8.0 2880 1.3003 0.4529
1.2821 9.0 3240 1.2830 0.4572
1.2516 10.0 3600 1.2757 0.4576
1.2516 11.0 3960 1.2619 0.4590
1.2304 12.0 4320 1.2501 0.4670
1.2172 13.0 4680 1.2674 0.4583
1.2043 14.0 5040 1.2459 0.4656
1.2043 15.0 5400 1.2464 0.4627
1.1956 16.0 5760 1.2439 0.4645
1.1814 17.0 6120 1.2395 0.4648
1.1814 18.0 6480 1.2429 0.4637
1.1816 19.0 6840 1.2450 0.4634
1.1794 20.0 7200 1.2431 0.4627

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-old-model-pipe-test_augmentation

Adapter
(12)
this model