rajistics's picture
update model card README.md
74e1012
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_200
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: train
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9033923303834809
          - name: Recall
            type: recall
            value: 0.9169161676646707
          - name: F1
            type: f1
            value: 0.9101040118870729
          - name: Accuracy
            type: accuracy
            value: 0.9121392190152802

layoutlmv3-finetuned-cord_200

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4529
  • Precision: 0.9034
  • Recall: 0.9169
  • F1: 0.9101
  • Accuracy: 0.9121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 6.25 250 1.0785 0.6815 0.7575 0.7175 0.7780
1.3902 12.5 500 0.5871 0.8542 0.8683 0.8612 0.8604
1.3902 18.75 750 0.4572 0.8728 0.8937 0.8831 0.8905
0.298 25.0 1000 0.3947 0.8936 0.9117 0.9026 0.9092
0.298 31.25 1250 0.3925 0.8982 0.9177 0.9078 0.9117
0.1023 37.5 1500 0.4290 0.8908 0.9102 0.9004 0.9041
0.1023 43.75 1750 0.4220 0.8980 0.9162 0.9070 0.9117
0.0475 50.0 2000 0.4755 0.8944 0.9064 0.9004 0.8990
0.0475 56.25 2250 0.4635 0.8992 0.9147 0.9069 0.9070
0.0296 62.5 2500 0.4475 0.9019 0.9154 0.9086 0.9117
0.0296 68.75 2750 0.4484 0.9004 0.9139 0.9071 0.9079
0.0242 75.0 3000 0.4529 0.9034 0.9169 0.9101 0.9121

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1