File size: 3,453 Bytes
893860f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_300
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cord-layoutlmv3
      type: cord-layoutlmv3
      config: cord
      split: train
      args: cord
    metrics:
    - name: Precision
      type: precision
      value: 0.9325426241660489
    - name: Recall
      type: recall
      value: 0.9416167664670658
    - name: F1
      type: f1
      value: 0.9370577281191806
    - name: Accuracy
      type: accuracy
      value: 0.9363327674023769
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cord_300

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3434
- Precision: 0.9325
- Recall: 0.9416
- F1: 0.9371
- Accuracy: 0.9363

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 4.17  | 250  | 1.0379          | 0.7204    | 0.7829 | 0.7504 | 0.7941   |
| 1.4162        | 8.33  | 500  | 0.5642          | 0.8462    | 0.8772 | 0.8614 | 0.8820   |
| 1.4162        | 12.5  | 750  | 0.3836          | 0.9055    | 0.9184 | 0.9119 | 0.9206   |
| 0.3211        | 16.67 | 1000 | 0.3209          | 0.9139    | 0.9296 | 0.9217 | 0.9334   |
| 0.3211        | 20.83 | 1250 | 0.2962          | 0.9275    | 0.9386 | 0.9330 | 0.9435   |
| 0.1191        | 25.0  | 1500 | 0.2979          | 0.9254    | 0.9379 | 0.9316 | 0.9402   |
| 0.1191        | 29.17 | 1750 | 0.3079          | 0.9282    | 0.9386 | 0.9334 | 0.9355   |
| 0.059         | 33.33 | 2000 | 0.3039          | 0.9232    | 0.9364 | 0.9298 | 0.9325   |
| 0.059         | 37.5  | 2250 | 0.3254          | 0.9248    | 0.9386 | 0.9316 | 0.9355   |
| 0.0342        | 41.67 | 2500 | 0.3404          | 0.9246    | 0.9364 | 0.9305 | 0.9334   |
| 0.0342        | 45.83 | 2750 | 0.3386          | 0.9354    | 0.9431 | 0.9392 | 0.9355   |
| 0.0226        | 50.0  | 3000 | 0.3274          | 0.9354    | 0.9431 | 0.9392 | 0.9359   |
| 0.0226        | 54.17 | 3250 | 0.3282          | 0.9341    | 0.9446 | 0.9393 | 0.9393   |
| 0.017         | 58.33 | 3500 | 0.3475          | 0.9319    | 0.9424 | 0.9371 | 0.9363   |
| 0.017         | 62.5  | 3750 | 0.3367          | 0.9340    | 0.9431 | 0.9385 | 0.9372   |
| 0.0145        | 66.67 | 4000 | 0.3434          | 0.9325    | 0.9416 | 0.9371 | 0.9363   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1