trained_weigths / README.md
rajtest's picture
rajtest/llama2_update_model_senti
a13167b verified
---
base_model: unsloth/llama-2-7b-bnb-4bit
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: trained_weigths
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trained_weigths
This model is a fine-tuned version of [unsloth/llama-2-7b-bnb-4bit](https://huggingface.co/unsloth/llama-2-7b-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.9981 | 262 | 0.0000 |
| 0.0 | 2.0 | 525 | 0.0000 |
| 0.0 | 2.9943 | 786 | 0.0000 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1