File size: 13,543 Bytes
6a867d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44656d5
 
 
 
6a867d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e436a25
6a867d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e436a25
6a867d4
 
 
 
 
 
e436a25
6a867d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb


import torch
import torch.nn as nn


LLAMA32_CONFIG_1B = {
    "vocab_size": 128_256,           # Vocabulary size
    "context_length": 8192,          # Maximum context length to use (reduced to save memory)
    "orig_context_length": 131_072,  # Context length that was used to train the model
    "emb_dim": 2048,                 # Embedding dimension
    "n_heads": 32,                   # Number of attention heads
    "n_layers": 16,                  # Number of layers
    "hidden_dim": 8192,              # Size of the intermediate dimension in FeedForward
    "n_kv_groups": 8,                # Key-Value groups for grouped-query attention
    "rope_base": 500_000.0,          # The base in RoPE's "theta"
    "dtype": torch.bfloat16,         # Lower-precision dtype to reduce memory usage
    "rope_freq": {                   # RoPE frequency scaling
        "factor": 32.0,
        "low_freq_factor": 1.0,
        "high_freq_factor": 4.0,
        "original_context_length": 8192,
    }
}

LLAMA32_CONFIG_3B = {
    "vocab_size": 128_256,           # Vocabulary size
    "context_length": 8192,          # Maximum context length to use (reduced to save memory)
    "orig_context_length": 131_072,  # Context length that was used to train the model
    "emb_dim": 3072,                 # Embedding dimension
    "n_heads": 24,                   # Number of attention heads
    "n_layers": 28,                  # Number of layers
    "hidden_dim": 8192,              # Size of the intermediate dimension in FeedForward
    "n_kv_groups": 8,                # Key-Value groups for grouped-query attention
    "rope_base": 500_000.0,          # The base in RoPE's "theta"
    "dtype": torch.bfloat16,         # Lower-precision dtype to reduce memory usage
    "rope_freq": {                   # RoPE frequency scaling
        "factor": 32.0,
        "low_freq_factor": 1.0,
        "high_freq_factor": 4.0,
        "original_context_length": 8192,
    }
}


class Llama3Model(nn.Module):
    def __init__(self, cfg):
        super().__init__()

        # Main model parameters
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])

        self.trf_blocks = nn.ModuleList(  # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
            [TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
        )

        self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])

        # Reusuable utilities
        self.register_buffer(
            "mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
            persistent=False
        )

        if cfg["orig_context_length"] != cfg["context_length"]:
            cfg["rope_base"] = rescale_theta(
                            cfg["rope_base"],
                            cfg["orig_context_length"],
                            cfg["context_length"]
                        )
        cos, sin = compute_rope_params(
            head_dim=cfg["emb_dim"] // cfg["n_heads"],
            theta_base=cfg["rope_base"],
            context_length=cfg["context_length"],
            freq_config=cfg["rope_freq"]
        )
        self.register_buffer("cos", cos, persistent=False)
        self.register_buffer("sin", sin, persistent=False)
        self.cfg = cfg

    def forward(self, in_idx):
        # Forward pass
        tok_embeds = self.tok_emb(in_idx)
        x = tok_embeds

        for block in self.trf_blocks:
            x = block(x, self.mask, self.cos, self.sin)
        x = self.final_norm(x)
        logits = self.out_head(x.to(self.cfg["dtype"]))
        return logits


class TransformerBlock(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.att = GroupedQueryAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            num_heads=cfg["n_heads"],
            num_kv_groups=cfg["n_kv_groups"],
            dtype=cfg["dtype"]
        )
        self.ff = FeedForward(cfg)
        self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
        self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])

    def forward(self, x, mask, cos, sin):
        # Shortcut connection for attention block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x, mask, cos, sin)  # Shape [batch_size, num_tokens, emb_size]
        x = x + shortcut  # Add the original input back

        # Shortcut connection for feed-forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = x + shortcut  # Add the original input back

        return x


class FeedForward(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
        self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
        self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)

    def forward(self, x):
        x_fc1 = self.fc1(x)
        x_fc2 = self.fc2(x)
        x = nn.functional.silu(x_fc1) * x_fc2
        return self.fc3(x)


class GroupedQueryAttention(nn.Module):
    def __init__(
            self, d_in, d_out, num_heads,
            num_kv_groups,
            dtype=None
    ):
        super().__init__()
        assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
        assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"

        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads

        self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
        self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
        self.num_kv_groups = num_kv_groups
        self.group_size = num_heads // num_kv_groups

        self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
        self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)

    def forward(self, x, mask, cos, sin):
        b, num_tokens, d_in = x.shape

        queries = self.W_query(x)  # Shape: (b, num_tokens, d_out)
        keys = self.W_key(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)
        values = self.W_value(x)  # Shape: (b, num_tokens, num_kv_groups * head_dim)

        # Reshape queries, keys, and values
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
        keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
        values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)

        # Transpose keys, values, and queries
        keys = keys.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)
        values = values.transpose(1, 2)  # Shape: (b, num_heads, num_tokens, head_dim)
        queries = queries.transpose(1, 2)  # Shape: (b, num_query_groups, num_tokens, head_dim)

        # Apply RoPE
        keys = apply_rope(keys, cos, sin)
        queries = apply_rope(queries, cos, sin)

        # Expand keys and values to match the number of heads
        # Shape: (b, num_heads, num_tokens, head_dim)
        keys = keys.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)
        values = values.repeat_interleave(self.group_size, dim=1)  # Shape: (b, num_heads, num_tokens, head_dim)
        # For example, before repeat_interleave along dim=1 (query groups):
        #   [K1, K2]
        # After repeat_interleave (each query group is repeated group_size times):
        #   [K1, K1, K2, K2]
        # If we used regular repeat instead of repeat_interleave, we'd get:
        #   [K1, K2, K1, K2]

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        # Shape: (b, num_heads, num_tokens, num_tokens)
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head

        # Use the mask to fill attention scores
        attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        assert keys.shape[-1] == self.head_dim

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.reshape(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec)  # optional projection

        return context_vec


def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
    assert head_dim % 2 == 0, "Embedding dimension must be even"

    # Compute the inverse frequencies
    inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))

    # Frequency adjustments
    if freq_config is not None:
        low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
        high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]

        wavelen = 2 * torch.pi / inv_freq

        inv_freq_llama = torch.where(
            wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
        )

        smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
            freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
        )

        smoothed_inv_freq = (
            (1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
        )

        is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
        inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
        inv_freq = inv_freq_llama

    # Generate position indices
    positions = torch.arange(context_length, dtype=dtype)

    # Compute the angles
    angles = positions[:, None] * inv_freq[None, :]  # Shape: (context_length, head_dim // 2)

    # Expand angles to match the head_dim
    angles = torch.cat([angles, angles], dim=1)  # Shape: (context_length, head_dim)

    # Precompute sine and cosine
    cos = torch.cos(angles)
    sin = torch.sin(angles)

    return cos, sin


def apply_rope(x, cos, sin):
    # x: (batch_size, num_heads, seq_len, head_dim)
    batch_size, num_heads, seq_len, head_dim = x.shape
    assert head_dim % 2 == 0, "Head dimension must be even"

    # Split x into first half and second half
    x1 = x[..., : head_dim // 2]  # First half
    x2 = x[..., head_dim // 2:]  # Second half

    # Adjust sin and cos shapes
    cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0)  # Shape: (1, 1, seq_len, head_dim)
    sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)

    # Apply the rotary transformation
    rotated = torch.cat((-x2, x1), dim=-1)
    x_rotated = (x * cos) + (rotated * sin)

    # It's ok to use lower-precision after applying cos and sin rotation
    return x_rotated.to(dtype=x.dtype)


def rescale_theta(theta_old, context_length_old, context_length_new):
    scaling_factor = context_length_new / context_length_old
    theta_new = theta_old * scaling_factor
    return theta_new


def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text)
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
    return encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0)  # remove batch dimension
    return tokenizer.decode(flat.tolist())


def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

        # Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)

        # Otherwise same as before: get idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)

        if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
            break

        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)

    return idx