Delete .ipynb_checkpoints/model-checkpoint.py
Browse files
.ipynb_checkpoints/model-checkpoint.py
DELETED
@@ -1,334 +0,0 @@
|
|
1 |
-
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
-
# Source for "Build a Large Language Model From Scratch"
|
3 |
-
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
4 |
-
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
|
9 |
-
|
10 |
-
LLAMA32_CONFIG_1B = {
|
11 |
-
"vocab_size": 128_256, # Vocabulary size
|
12 |
-
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
13 |
-
"orig_context_length": 131_072, # Context length that was used to train the model
|
14 |
-
"emb_dim": 2048, # Embedding dimension
|
15 |
-
"n_heads": 32, # Number of attention heads
|
16 |
-
"n_layers": 16, # Number of layers
|
17 |
-
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
18 |
-
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
19 |
-
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
20 |
-
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
21 |
-
"rope_freq": { # RoPE frequency scaling
|
22 |
-
"factor": 32.0,
|
23 |
-
"low_freq_factor": 1.0,
|
24 |
-
"high_freq_factor": 4.0,
|
25 |
-
"original_context_length": 8192,
|
26 |
-
}
|
27 |
-
}
|
28 |
-
|
29 |
-
LLAMA32_CONFIG_3B = {
|
30 |
-
"vocab_size": 128_256, # Vocabulary size
|
31 |
-
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
32 |
-
"orig_context_length": 131_072, # Context length that was used to train the model
|
33 |
-
"emb_dim": 3072, # Embedding dimension
|
34 |
-
"n_heads": 24, # Number of attention heads
|
35 |
-
"n_layers": 28, # Number of layers
|
36 |
-
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
37 |
-
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
38 |
-
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
39 |
-
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
40 |
-
"rope_freq": { # RoPE frequency scaling
|
41 |
-
"factor": 32.0,
|
42 |
-
"low_freq_factor": 1.0,
|
43 |
-
"high_freq_factor": 4.0,
|
44 |
-
"original_context_length": 8192,
|
45 |
-
}
|
46 |
-
}
|
47 |
-
|
48 |
-
|
49 |
-
class Llama3Model(nn.Module):
|
50 |
-
def __init__(self, cfg):
|
51 |
-
super().__init__()
|
52 |
-
|
53 |
-
# Main model parameters
|
54 |
-
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
|
55 |
-
|
56 |
-
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
|
57 |
-
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
|
58 |
-
)
|
59 |
-
|
60 |
-
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
61 |
-
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
62 |
-
|
63 |
-
# Reusuable utilities
|
64 |
-
self.register_buffer(
|
65 |
-
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
|
66 |
-
persistent=False
|
67 |
-
)
|
68 |
-
|
69 |
-
if cfg["orig_context_length"] != cfg["context_length"]:
|
70 |
-
cfg["rope_base"] = rescale_theta(
|
71 |
-
cfg["rope_base"],
|
72 |
-
cfg["orig_context_length"],
|
73 |
-
cfg["context_length"]
|
74 |
-
)
|
75 |
-
cos, sin = compute_rope_params(
|
76 |
-
head_dim=cfg["emb_dim"] // cfg["n_heads"],
|
77 |
-
theta_base=cfg["rope_base"],
|
78 |
-
context_length=cfg["context_length"],
|
79 |
-
freq_config=cfg["rope_freq"]
|
80 |
-
)
|
81 |
-
self.register_buffer("cos", cos, persistent=False)
|
82 |
-
self.register_buffer("sin", sin, persistent=False)
|
83 |
-
self.cfg = cfg
|
84 |
-
|
85 |
-
def forward(self, in_idx):
|
86 |
-
# Forward pass
|
87 |
-
tok_embeds = self.tok_emb(in_idx)
|
88 |
-
x = tok_embeds
|
89 |
-
|
90 |
-
for block in self.trf_blocks:
|
91 |
-
x = block(x, self.mask, self.cos, self.sin)
|
92 |
-
x = self.final_norm(x)
|
93 |
-
logits = self.out_head(x.to(self.cfg["dtype"]))
|
94 |
-
return logits
|
95 |
-
|
96 |
-
|
97 |
-
class TransformerBlock(nn.Module):
|
98 |
-
def __init__(self, cfg):
|
99 |
-
super().__init__()
|
100 |
-
self.att = GroupedQueryAttention(
|
101 |
-
d_in=cfg["emb_dim"],
|
102 |
-
d_out=cfg["emb_dim"],
|
103 |
-
num_heads=cfg["n_heads"],
|
104 |
-
num_kv_groups=cfg["n_kv_groups"],
|
105 |
-
dtype=cfg["dtype"]
|
106 |
-
)
|
107 |
-
self.ff = FeedForward(cfg)
|
108 |
-
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
109 |
-
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
110 |
-
|
111 |
-
def forward(self, x, mask, cos, sin):
|
112 |
-
# Shortcut connection for attention block
|
113 |
-
shortcut = x
|
114 |
-
x = self.norm1(x)
|
115 |
-
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
|
116 |
-
x = x + shortcut # Add the original input back
|
117 |
-
|
118 |
-
# Shortcut connection for feed-forward block
|
119 |
-
shortcut = x
|
120 |
-
x = self.norm2(x)
|
121 |
-
x = self.ff(x)
|
122 |
-
x = x + shortcut # Add the original input back
|
123 |
-
|
124 |
-
return x
|
125 |
-
|
126 |
-
|
127 |
-
class FeedForward(nn.Module):
|
128 |
-
def __init__(self, cfg):
|
129 |
-
super().__init__()
|
130 |
-
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
131 |
-
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
132 |
-
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
|
133 |
-
|
134 |
-
def forward(self, x):
|
135 |
-
x_fc1 = self.fc1(x)
|
136 |
-
x_fc2 = self.fc2(x)
|
137 |
-
x = nn.functional.silu(x_fc1) * x_fc2
|
138 |
-
return self.fc3(x)
|
139 |
-
|
140 |
-
|
141 |
-
class GroupedQueryAttention(nn.Module):
|
142 |
-
def __init__(
|
143 |
-
self, d_in, d_out, num_heads,
|
144 |
-
num_kv_groups,
|
145 |
-
dtype=None
|
146 |
-
):
|
147 |
-
super().__init__()
|
148 |
-
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
149 |
-
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
|
150 |
-
|
151 |
-
self.d_out = d_out
|
152 |
-
self.num_heads = num_heads
|
153 |
-
self.head_dim = d_out // num_heads
|
154 |
-
|
155 |
-
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
156 |
-
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
157 |
-
self.num_kv_groups = num_kv_groups
|
158 |
-
self.group_size = num_heads // num_kv_groups
|
159 |
-
|
160 |
-
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
|
161 |
-
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
|
162 |
-
|
163 |
-
def forward(self, x, mask, cos, sin):
|
164 |
-
b, num_tokens, d_in = x.shape
|
165 |
-
|
166 |
-
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
|
167 |
-
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
168 |
-
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
169 |
-
|
170 |
-
# Reshape queries, keys, and values
|
171 |
-
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
172 |
-
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
173 |
-
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
174 |
-
|
175 |
-
# Transpose keys, values, and queries
|
176 |
-
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
177 |
-
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
178 |
-
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
|
179 |
-
|
180 |
-
# Apply RoPE
|
181 |
-
keys = apply_rope(keys, cos, sin)
|
182 |
-
queries = apply_rope(queries, cos, sin)
|
183 |
-
|
184 |
-
# Expand keys and values to match the number of heads
|
185 |
-
# Shape: (b, num_heads, num_tokens, head_dim)
|
186 |
-
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
187 |
-
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
188 |
-
# For example, before repeat_interleave along dim=1 (query groups):
|
189 |
-
# [K1, K2]
|
190 |
-
# After repeat_interleave (each query group is repeated group_size times):
|
191 |
-
# [K1, K1, K2, K2]
|
192 |
-
# If we used regular repeat instead of repeat_interleave, we'd get:
|
193 |
-
# [K1, K2, K1, K2]
|
194 |
-
|
195 |
-
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
196 |
-
# Shape: (b, num_heads, num_tokens, num_tokens)
|
197 |
-
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
198 |
-
|
199 |
-
# Use the mask to fill attention scores
|
200 |
-
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
|
201 |
-
|
202 |
-
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
203 |
-
assert keys.shape[-1] == self.head_dim
|
204 |
-
|
205 |
-
# Shape: (b, num_tokens, num_heads, head_dim)
|
206 |
-
context_vec = (attn_weights @ values).transpose(1, 2)
|
207 |
-
|
208 |
-
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
209 |
-
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
210 |
-
context_vec = self.out_proj(context_vec) # optional projection
|
211 |
-
|
212 |
-
return context_vec
|
213 |
-
|
214 |
-
|
215 |
-
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
|
216 |
-
assert head_dim % 2 == 0, "Embedding dimension must be even"
|
217 |
-
|
218 |
-
# Compute the inverse frequencies
|
219 |
-
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
|
220 |
-
|
221 |
-
# Frequency adjustments
|
222 |
-
if freq_config is not None:
|
223 |
-
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
|
224 |
-
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
|
225 |
-
|
226 |
-
wavelen = 2 * torch.pi / inv_freq
|
227 |
-
|
228 |
-
inv_freq_llama = torch.where(
|
229 |
-
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
|
230 |
-
)
|
231 |
-
|
232 |
-
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
|
233 |
-
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
|
234 |
-
)
|
235 |
-
|
236 |
-
smoothed_inv_freq = (
|
237 |
-
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
|
238 |
-
)
|
239 |
-
|
240 |
-
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
|
241 |
-
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
242 |
-
inv_freq = inv_freq_llama
|
243 |
-
|
244 |
-
# Generate position indices
|
245 |
-
positions = torch.arange(context_length, dtype=dtype)
|
246 |
-
|
247 |
-
# Compute the angles
|
248 |
-
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
|
249 |
-
|
250 |
-
# Expand angles to match the head_dim
|
251 |
-
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
|
252 |
-
|
253 |
-
# Precompute sine and cosine
|
254 |
-
cos = torch.cos(angles)
|
255 |
-
sin = torch.sin(angles)
|
256 |
-
|
257 |
-
return cos, sin
|
258 |
-
|
259 |
-
|
260 |
-
def apply_rope(x, cos, sin):
|
261 |
-
# x: (batch_size, num_heads, seq_len, head_dim)
|
262 |
-
batch_size, num_heads, seq_len, head_dim = x.shape
|
263 |
-
assert head_dim % 2 == 0, "Head dimension must be even"
|
264 |
-
|
265 |
-
# Split x into first half and second half
|
266 |
-
x1 = x[..., : head_dim // 2] # First half
|
267 |
-
x2 = x[..., head_dim // 2:] # Second half
|
268 |
-
|
269 |
-
# Adjust sin and cos shapes
|
270 |
-
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
|
271 |
-
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
|
272 |
-
|
273 |
-
# Apply the rotary transformation
|
274 |
-
rotated = torch.cat((-x2, x1), dim=-1)
|
275 |
-
x_rotated = (x * cos) + (rotated * sin)
|
276 |
-
|
277 |
-
# It's ok to use lower-precision after applying cos and sin rotation
|
278 |
-
return x_rotated.to(dtype=x.dtype)
|
279 |
-
|
280 |
-
|
281 |
-
def rescale_theta(theta_old, context_length_old, context_length_new):
|
282 |
-
scaling_factor = context_length_new / context_length_old
|
283 |
-
theta_new = theta_old * scaling_factor
|
284 |
-
return theta_new
|
285 |
-
|
286 |
-
|
287 |
-
def text_to_token_ids(text, tokenizer):
|
288 |
-
encoded = tokenizer.encode(text)
|
289 |
-
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
290 |
-
return encoded_tensor
|
291 |
-
|
292 |
-
|
293 |
-
def token_ids_to_text(token_ids, tokenizer):
|
294 |
-
flat = token_ids.squeeze(0) # remove batch dimension
|
295 |
-
return tokenizer.decode(flat.tolist())
|
296 |
-
|
297 |
-
|
298 |
-
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
|
299 |
-
|
300 |
-
# For-loop is the same as before: Get logits, and only focus on last time step
|
301 |
-
for _ in range(max_new_tokens):
|
302 |
-
idx_cond = idx[:, -context_size:]
|
303 |
-
with torch.no_grad():
|
304 |
-
logits = model(idx_cond)
|
305 |
-
logits = logits[:, -1, :]
|
306 |
-
|
307 |
-
# Filter logits with top_k sampling
|
308 |
-
if top_k is not None:
|
309 |
-
# Keep only top_k values
|
310 |
-
top_logits, _ = torch.topk(logits, top_k)
|
311 |
-
min_val = top_logits[:, -1]
|
312 |
-
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
313 |
-
|
314 |
-
# Apply temperature scaling
|
315 |
-
if temperature > 0.0:
|
316 |
-
logits = logits / temperature
|
317 |
-
|
318 |
-
# Apply softmax to get probabilities
|
319 |
-
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
320 |
-
|
321 |
-
# Sample from the distribution
|
322 |
-
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
323 |
-
|
324 |
-
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
325 |
-
else:
|
326 |
-
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
327 |
-
|
328 |
-
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
|
329 |
-
break
|
330 |
-
|
331 |
-
# Same as before: append sampled index to the running sequence
|
332 |
-
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
333 |
-
|
334 |
-
return idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|