metadata
base_model: rasyosef/phi-2-sft-openhermes-128k-v2-merged
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: phi-2-openhermes-128k-v2-dpo-combined
results: []
phi-2-openhermes-128k-v2-dpo-combined
This model is a fine-tuned version of rasyosef/phi-2-sft-openhermes-128k-v2-merged on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5599
- Rewards/chosen: -0.3234
- Rewards/rejected: -0.9542
- Rewards/accuracies: 0.6812
- Rewards/margins: 0.6309
- Logps/rejected: -158.4123
- Logps/chosen: -144.1796
- Logits/rejected: -1.6783
- Logits/chosen: -1.6735
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 250
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6927 | 0.0583 | 100 | 0.6927 | -0.0007 | -0.0020 | 0.4976 | 0.0012 | -148.8894 | -140.9533 | -1.7645 | -1.7622 |
0.6903 | 0.1166 | 200 | 0.6848 | -0.0085 | -0.0260 | 0.5556 | 0.0175 | -149.1299 | -141.0305 | -1.7667 | -1.7644 |
0.6757 | 0.1749 | 300 | 0.6530 | -0.0338 | -0.1263 | 0.6618 | 0.0924 | -150.1323 | -141.2841 | -1.7686 | -1.7658 |
0.6457 | 0.2332 | 400 | 0.6189 | -0.0854 | -0.2869 | 0.7053 | 0.2015 | -151.7387 | -141.7998 | -1.7678 | -1.7649 |
0.6231 | 0.2915 | 500 | 0.5994 | -0.1345 | -0.4309 | 0.6908 | 0.2964 | -153.1783 | -142.2908 | -1.7660 | -1.7625 |
0.6001 | 0.3499 | 600 | 0.5882 | -0.1854 | -0.5670 | 0.7041 | 0.3816 | -154.5396 | -142.7997 | -1.7626 | -1.7594 |
0.6071 | 0.4082 | 700 | 0.5832 | -0.2023 | -0.6173 | 0.7126 | 0.4149 | -155.0424 | -142.9693 | -1.7564 | -1.7533 |
0.6114 | 0.4665 | 800 | 0.5801 | -0.2174 | -0.6640 | 0.7017 | 0.4466 | -155.5101 | -143.1204 | -1.7551 | -1.7514 |
0.5963 | 0.5248 | 900 | 0.5749 | -0.2216 | -0.6958 | 0.7198 | 0.4742 | -155.8275 | -143.1621 | -1.7411 | -1.7376 |
0.5958 | 0.5831 | 1000 | 0.5739 | -0.2352 | -0.7314 | 0.7077 | 0.4961 | -156.1834 | -143.2981 | -1.7384 | -1.7346 |
0.5883 | 0.6414 | 1100 | 0.5719 | -0.2631 | -0.7884 | 0.6920 | 0.5253 | -156.7536 | -143.5765 | -1.7338 | -1.7297 |
0.5821 | 0.6997 | 1200 | 0.5712 | -0.2920 | -0.8496 | 0.6993 | 0.5575 | -157.3655 | -143.8663 | -1.7305 | -1.7266 |
0.6037 | 0.7580 | 1300 | 0.5691 | -0.2837 | -0.8327 | 0.6993 | 0.5490 | -157.1967 | -143.7830 | -1.7239 | -1.7196 |
0.5781 | 0.8163 | 1400 | 0.5680 | -0.3013 | -0.8689 | 0.6920 | 0.5676 | -157.5589 | -143.9591 | -1.7173 | -1.7132 |
0.5985 | 0.8746 | 1500 | 0.5685 | -0.2801 | -0.8286 | 0.7005 | 0.5485 | -157.1556 | -143.7466 | -1.7099 | -1.7055 |
0.5925 | 0.9329 | 1600 | 0.5677 | -0.2742 | -0.8259 | 0.7005 | 0.5516 | -157.1285 | -143.6882 | -1.7002 | -1.6959 |
0.6039 | 0.9913 | 1700 | 0.5658 | -0.2697 | -0.8189 | 0.7005 | 0.5492 | -157.0589 | -143.6426 | -1.6978 | -1.6936 |
0.5883 | 1.0496 | 1800 | 0.5648 | -0.2695 | -0.8269 | 0.7029 | 0.5574 | -157.1392 | -143.6413 | -1.6960 | -1.6915 |
0.5844 | 1.1079 | 1900 | 0.5644 | -0.2821 | -0.8480 | 0.6920 | 0.5659 | -157.3497 | -143.7664 | -1.6906 | -1.6863 |
0.5606 | 1.1662 | 2000 | 0.5646 | -0.3007 | -0.8863 | 0.6993 | 0.5856 | -157.7325 | -143.9527 | -1.6925 | -1.6878 |
0.5835 | 1.2245 | 2100 | 0.5631 | -0.3071 | -0.8997 | 0.6957 | 0.5926 | -157.8670 | -144.0166 | -1.6917 | -1.6875 |
0.5801 | 1.2828 | 2200 | 0.5622 | -0.3144 | -0.9213 | 0.6884 | 0.6069 | -158.0828 | -144.0901 | -1.6850 | -1.6805 |
0.6022 | 1.3411 | 2300 | 0.5637 | -0.3096 | -0.9078 | 0.6993 | 0.5982 | -157.9474 | -144.0419 | -1.6837 | -1.6793 |
0.5694 | 1.3994 | 2400 | 0.5618 | -0.3143 | -0.9225 | 0.6884 | 0.6082 | -158.0945 | -144.0888 | -1.6834 | -1.6790 |
0.5703 | 1.4577 | 2500 | 0.5612 | -0.3125 | -0.9247 | 0.6957 | 0.6121 | -158.1165 | -144.0712 | -1.6803 | -1.6758 |
0.5732 | 1.5160 | 2600 | 0.5590 | -0.3150 | -0.9377 | 0.6957 | 0.6228 | -158.2469 | -144.0954 | -1.6801 | -1.6750 |
0.5584 | 1.5743 | 2700 | 0.5603 | -0.3206 | -0.9441 | 0.6848 | 0.6235 | -158.3112 | -144.1520 | -1.6796 | -1.6749 |
0.5677 | 1.6327 | 2800 | 0.5605 | -0.3233 | -0.9494 | 0.6884 | 0.6260 | -158.3634 | -144.1790 | -1.6800 | -1.6752 |
0.575 | 1.6910 | 2900 | 0.5609 | -0.3235 | -0.9500 | 0.6920 | 0.6265 | -158.3701 | -144.1811 | -1.6788 | -1.6741 |
0.5752 | 1.7493 | 3000 | 0.5604 | -0.3242 | -0.9528 | 0.6920 | 0.6286 | -158.3975 | -144.1876 | -1.6782 | -1.6734 |
0.57 | 1.8076 | 3100 | 0.5609 | -0.3242 | -0.9536 | 0.6896 | 0.6295 | -158.4062 | -144.1877 | -1.6779 | -1.6727 |
0.5759 | 1.8659 | 3200 | 0.5608 | -0.3244 | -0.9537 | 0.6884 | 0.6293 | -158.4068 | -144.1899 | -1.6783 | -1.6734 |
0.5789 | 1.9242 | 3300 | 0.5600 | -0.3228 | -0.9558 | 0.6884 | 0.6330 | -158.4273 | -144.1738 | -1.6778 | -1.6727 |
0.5622 | 1.9825 | 3400 | 0.5599 | -0.3234 | -0.9542 | 0.6812 | 0.6309 | -158.4123 | -144.1796 | -1.6783 | -1.6735 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1