ratish/DBERT_CleanDesc_Mode_v10

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0060
  • Validation Loss: 0.2047
  • Train Accuracy: 0.925
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.6863 0.6733 0.475 0
0.5131 0.3023 0.95 1
0.2499 0.1768 0.95 2
0.1463 0.1702 0.925 3
0.1212 0.1646 0.9 4
0.0897 0.1807 0.925 5
0.0689 0.1947 0.925 6
0.0544 0.1885 0.925 7
0.0476 0.1888 0.925 8
0.0325 0.2012 0.925 9
0.0229 0.1717 0.925 10
0.0113 0.2052 0.95 11
0.0087 0.1650 0.925 12
0.0063 0.1987 0.95 13
0.0060 0.2047 0.925 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support