KGAQ-2

This model is a fine-tuned version of google/flan-t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6712
  • Rouge1: 9.9002
  • Rouge2: 0.817
  • Rougel: 9.31
  • Rougelsum: 9.8757
  • Gen Len: 4.0
  • F1: 0.0005
  • Recall: 0.0008
  • Precision: 0.0003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Recall Precision
3.5701 1.0 598 3.3914 14.1052 1.2078 13.0257 14.1332 3.0 0.0 0.0 0.0
3.0379 2.0 1196 2.7468 12.4379 1.0435 11.3645 12.4814 3.0 0.0005 0.0008 0.0003
2.2773 3.0 1794 2.4962 25.6591 2.6653 16.5422 25.687 6.0 0.0 0.0 0.0
1.8845 4.0 2392 2.4370 8.8131 0.2887 8.1866 8.8014 3.0 0.0005 0.0008 0.0003
1.7721 5.0 2990 2.5342 8.2864 0.5105 7.6569 8.2655 3.0 0.0005 0.0008 0.0003
2.1007 6.0 3588 2.5028 27.8343 3.8693 19.0586 27.8325 6.4795 0.0022 0.0036 0.0015
2.0255 7.0 4186 2.5544 8.2864 0.5105 7.6569 8.2655 3.0 0.0005 0.0008 0.0003
1.9177 8.0 4784 2.5356 22.6347 3.1887 14.2667 22.6751 7.0 0.0005 0.0008 0.0003
1.7165 9.0 5382 2.5492 9.9002 0.817 9.31 9.8757 4.0 0.0005 0.0008 0.0003
1.645 10.0 5980 2.6712 9.9002 0.817 9.31 9.8757 4.0 0.0005 0.0008 0.0003

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
783M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for rausch/KGAQ-2

Finetuned
(106)
this model