SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the qqp_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilroberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ravi259/distilroberta-base-sentence-transformer_finetuned")
# Run inference
sentences = [
    'A dog is in the water.',
    'Wet brown dog swims towards camera.',
    'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric all-nli-dev all-nli-test
cosine_accuracy 0.9557 0.9048

Training Details

Training Dataset

qqp_triplets

  • Dataset: qqp_triplets at f475d9c
  • Size: 101,762 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.38 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 12.8 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 18.02 tokens
    • max: 66 tokens
    • min: 5 tokens
    • mean: 9.81 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.37 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss all-nli-dev_cosine_accuracy all-nli-test_cosine_accuracy
0.0029 100 4.8503 - - -
0.0057 200 4.8595 - - -
0.0086 300 4.8404 - - -
0.0115 400 4.7216 - - -
0.0143 500 4.5376 - - -
0.0172 600 4.2746 - - -
0.0201 700 3.8115 - - -
0.0229 800 3.4799 - - -
0.0258 900 3.3466 - - -
0.0287 1000 3.1246 - - -
0.0315 1100 3.0024 - - -
0.0344 1200 2.6864 - - -
0.0373 1300 2.6236 - - -
0.0402 1400 2.312 - - -
0.0430 1500 2.2408 - - -
0.0459 1600 2.0932 - - -
0.0488 1700 1.9609 - - -
0.0516 1800 1.9065 - - -
0.0545 1900 2.0037 - - -
0.0574 2000 1.8347 - - -
0.0602 2100 1.7955 - - -
-1 -1 - - 0.8873 0.9048
0.0029 100 1.6861 1.5452 0.8873 -
0.0057 200 1.7841 1.5419 0.8873 -
0.0086 300 1.7054 1.5365 0.8878 -
0.0115 400 1.7229 1.5309 0.8885 -
0.0143 500 1.569 1.5230 0.8885 -
0.0172 600 1.7132 1.5100 0.8902 -
0.0201 700 1.6673 - - -
0.0143 500 1.6086 1.4758 0.8917 -
0.0287 1000 1.562 1.4129 0.8958 -
0.0430 1500 1.4604 1.3243 0.8990 -
0.0574 2000 1.2731 1.2694 0.9014 -
0.0717 2500 1.3045 1.1753 0.9058 -
0.0860 3000 1.261 1.0945 0.9139 -
0.1004 3500 1.2035 1.0355 0.9201 -
0.1147 4000 1.1648 0.9687 0.9242 -
0.1291 4500 1.1255 0.9390 0.9256 -
0.1434 5000 1.0097 0.9202 0.9228 -
0.1577 5500 0.997 0.8762 0.9297 -
0.1721 6000 0.9698 0.8487 0.9338 -
0.1864 6500 0.8949 0.8460 0.9339 -
0.2008 7000 0.9007 0.8203 0.9345 -
0.2151 7500 0.8834 0.8189 0.9353 -
0.2294 8000 0.8699 0.8025 0.9359 -
0.2438 8500 0.8574 0.7930 0.9371 -
0.2868 10000 0.5934 - - -
0.5736 20000 0.6866 - - -
0.0029 100 0.5108 0.6478 0.9474 -
0.0057 200 0.6647 0.6448 0.9479 -
0.0086 300 0.6496 0.6370 0.9481 -
0.0115 400 0.558 0.6321 0.9490 -
0.0143 500 0.5273 0.6300 0.9484 -
0.0172 600 0.5374 0.6234 0.9491 -
0.0201 700 0.5382 0.6216 0.9473 -
0.0229 800 0.5819 0.6190 0.9484 -
0.0258 900 0.5833 0.6116 0.9490 -
0.0287 1000 0.4391 0.6126 0.9476 -
0.0315 1100 0.6385 0.6041 0.9484 -
0.0344 1200 0.5859 0.5952 0.9519 -
0.0373 1300 0.5665 0.5914 0.9505 -
0.0402 1400 0.5657 0.5939 0.9485 -
0.0430 1500 0.5685 0.6102 0.9481 -
0.0459 1600 0.5033 0.5939 0.9491 -
0.0488 1700 0.4487 0.5958 0.9485 -
0.0516 1800 0.4801 0.6010 0.9461 -
0.0545 1900 0.5075 0.6012 0.9484 -
0.0574 2000 0.518 0.5895 0.9496 -
0.0602 2100 0.4062 0.5886 0.9484 -
0.0631 2200 0.4278 0.6018 0.9467 -
0.0660 2300 0.4356 0.6112 0.9473 -
0.0688 2400 0.4446 0.6068 0.9503 -
0.0717 2500 0.4782 0.6000 0.9481 -
0.0746 2600 0.4841 0.6058 0.9511 -
0.0774 2700 0.4566 0.5983 0.9508 -
0.0803 2800 0.4021 0.6063 0.9491 -
0.0832 2900 0.5318 0.6231 0.9499 -
0.0860 3000 0.4938 0.6310 0.9465 -
0.0889 3100 0.5207 0.6022 0.9520 -
0.0918 3200 0.4585 0.6072 0.9517 -
0.0946 3300 0.4797 0.6051 0.9509 -
0.0975 3400 0.4313 0.6169 0.9494 -
0.1004 3500 0.5005 0.6386 0.9497 -
0.1033 3600 0.4712 0.6337 0.9440 -
0.1061 3700 0.4868 0.6309 0.9491 -
0.1090 3800 0.5115 0.6558 0.9476 -
0.1119 3900 0.4655 0.6351 0.9482 -
0.1147 4000 0.4614 0.6397 0.9470 -
0.1176 4100 0.5194 0.6409 0.9449 -
0.1205 4200 0.4946 0.6423 0.9453 -
0.1233 4300 0.5083 0.6323 0.9474 -
0.1262 4400 0.4596 0.6240 0.9481 -
0.1291 4500 0.4472 0.6323 0.9487 -
0.1319 4600 0.4135 0.6158 0.9525 -
0.1348 4700 0.4167 0.6240 0.9482 -
0.1377 4800 0.4163 0.6278 0.9484 -
0.1405 4900 0.3373 0.6335 0.9468 -
0.1434 5000 0.4124 0.6374 0.9443 -
0.1463 5100 0.4058 0.6522 0.9456 -
0.1491 5200 0.4267 0.6638 0.9435 -
0.1520 5300 0.4091 0.6874 0.9399 -
0.1549 5400 0.3793 0.6383 0.9482 -
0.1577 5500 0.3941 0.6700 0.9435 -
0.1606 5600 0.4212 0.6721 0.9468 -
0.1635 5700 0.3591 0.6548 0.9453 -
0.1664 5800 0.3368 0.6837 0.9433 -
0.1692 5900 0.4446 0.6728 0.9438 -
0.1721 6000 0.3587 0.6567 0.9482 -
0.1750 6100 0.2734 0.6608 0.9471 -
0.1778 6200 0.3344 0.6621 0.9452 -
0.1807 6300 0.3618 0.6798 0.9408 -
0.1836 6400 0.3687 0.6727 0.9412 -
0.1864 6500 0.3313 0.6448 0.9449 -
0.1893 6600 0.3492 0.6545 0.9440 -
0.1922 6700 0.3462 0.6598 0.9446 -
0.1950 6800 0.3201 0.6751 0.9424 -
0.1979 6900 0.3084 0.6400 0.9430 -
0.2008 7000 0.3034 0.6589 0.9453 -
0.2036 7100 0.3229 0.6881 0.9427 -
0.2065 7200 0.2896 0.6497 0.9435 -
0.2094 7300 0.3159 0.6333 0.9471 -
0.2122 7400 0.2931 0.6273 0.9470 -
0.2151 7500 0.2994 0.6412 0.9464 -
0.2180 7600 0.2507 0.6144 0.9478 -
0.2208 7700 0.266 0.6523 0.9421 -
0.2237 7800 0.2872 0.6294 0.9464 -
0.2266 7900 0.2913 0.6471 0.9461 -
0.2294 8000 0.2095 0.6418 0.9443 -
0.2323 8100 0.2603 0.6900 0.9383 -
0.2352 8200 0.2553 0.6363 0.9437 -
0.2381 8300 0.309 0.6238 0.9452 -
0.2409 8400 0.2574 0.6488 0.9414 -
0.2438 8500 0.2083 0.6528 0.9444 -
0.2467 8600 0.2371 0.6723 0.9400 -
0.2495 8700 0.2962 0.6354 0.9426 -
0.2524 8800 0.4068 0.6418 0.9420 -
0.2553 8900 0.2896 0.6188 0.9447 -
0.2581 9000 0.3449 0.6375 0.9424 -
0.2610 9100 0.308 0.6172 0.9470 -
0.2639 9200 0.4177 0.6231 0.9458 -
0.2667 9300 0.3373 0.6260 0.9488 -
0.2696 9400 0.3533 0.6268 0.9496 -
0.2725 9500 0.3793 0.6539 0.9455 -
0.2753 9600 0.3553 0.6253 0.9443 -
0.2782 9700 0.3545 0.6050 0.9471 -
0.2811 9800 0.3108 0.6228 0.9459 -
0.2839 9900 0.414 0.6265 0.9467 -
0.2868 10000 0.3686 0.6263 0.9459 -
0.2897 10100 0.366 0.6178 0.9453 -
0.2925 10200 0.3388 0.6428 0.9429 -
0.2954 10300 0.3805 0.6244 0.9473 -
0.2983 10400 0.3446 0.6195 0.9458 -
0.3012 10500 0.2602 0.6242 0.9456 -
0.3040 10600 0.328 0.6323 0.9438 -
0.3069 10700 0.3151 0.6179 0.9485 -
0.3098 10800 0.2682 0.6179 0.9465 -
0.3126 10900 0.3493 0.6365 0.9435 -
0.3155 11000 0.3194 0.6297 0.9449 -
0.3184 11100 0.2754 0.6478 0.9397 -
0.3212 11200 0.3181 0.6163 0.9450 -
0.3241 11300 0.2817 0.6100 0.9441 -
0.3270 11400 0.3091 0.5994 0.9465 -
0.3298 11500 0.2963 0.6135 0.9468 -
0.3327 11600 0.2824 0.6086 0.9455 -
0.3356 11700 0.2495 0.6214 0.9473 -
0.3384 11800 0.3144 0.6338 0.9424 -
0.3413 11900 0.2904 0.6220 0.9459 -
0.3442 12000 0.2964 0.6120 0.9478 -
0.3470 12100 0.2887 0.6104 0.9471 -
0.3499 12200 0.2619 0.6152 0.9476 -
0.3528 12300 0.3758 0.6147 0.9485 -
0.3556 12400 0.2787 0.6149 0.9465 -
0.3585 12500 0.2811 0.6044 0.9496 -
0.3614 12600 0.2409 0.6021 0.9487 -
0.3643 12700 0.2835 0.6113 0.9474 -
0.3671 12800 0.3025 0.6181 0.9467 -
0.3700 12900 0.2741 0.6016 0.9500 -
0.3729 13000 0.2868 0.5940 0.9505 -
0.3757 13100 0.2739 0.6104 0.9478 -
0.3786 13200 0.2912 0.6229 0.9456 -
0.3815 13300 0.3091 0.6329 0.9443 -
0.3843 13400 0.2513 0.6309 0.9414 -
0.3872 13500 0.2921 0.6273 0.9437 -
0.3901 13600 0.272 0.6149 0.9444 -
0.3929 13700 0.2553 0.6398 0.9421 -
0.3958 13800 0.2647 0.6282 0.9465 -
0.3987 13900 0.2125 0.6196 0.9467 -
0.4015 14000 0.2639 0.6072 0.9423 -
0.4044 14100 0.2206 0.6136 0.9446 -
0.4073 14200 0.2165 0.6117 0.9459 -
0.4101 14300 0.1993 0.6256 0.9406 -
0.4130 14400 0.2288 0.6332 0.9447 -
0.4159 14500 0.2434 0.6109 0.9435 -
0.4187 14600 0.2274 0.6106 0.9458 -
0.4216 14700 0.2088 0.5842 0.9478 -
0.4245 14800 0.2133 0.6151 0.9458 -
0.4274 14900 0.2033 0.5970 0.9464 -
0.4302 15000 0.2469 0.6124 0.9461 -
0.4331 15100 0.2415 0.6001 0.9478 -
0.4360 15200 0.1785 0.6013 0.9465 -
0.4388 15300 0.2257 0.6015 0.9465 -
0.4417 15400 0.1985 0.5986 0.9491 -
0.4446 15500 0.2581 0.6048 0.9502 -
0.4474 15600 0.2702 0.6154 0.9474 -
0.4503 15700 0.2028 0.6003 0.9493 -
0.4532 15800 0.1722 0.6275 0.9450 -
0.4560 15900 0.1977 0.6310 0.9432 -
0.4589 16000 0.2191 0.6123 0.9482 -
0.4618 16100 0.2124 0.6260 0.9458 -
0.4646 16200 0.2143 0.6099 0.9474 -
0.4675 16300 0.2018 0.5997 0.9462 -
0.4704 16400 0.1887 0.6123 0.9449 -
0.4732 16500 0.2036 0.6009 0.9505 -
0.4761 16600 0.1788 0.5969 0.9508 -
0.4790 16700 0.2213 0.6137 0.9464 -
0.4818 16800 0.2031 0.5984 0.9488 -
0.4847 16900 0.1904 0.6026 0.9488 -
0.4876 17000 0.173 0.6161 0.9488 -
0.4904 17100 0.2011 0.6114 0.9456 -
0.4933 17200 0.2513 0.5981 0.9482 -
0.4962 17300 0.2176 0.5912 0.9503 -
0.4991 17400 0.1753 0.5911 0.9506 -
0.5019 17500 0.227 0.6049 0.9467 -
0.5048 17600 0.2112 0.5998 0.9473 -
0.5077 17700 0.2064 0.5989 0.9478 -
0.5105 17800 0.1722 0.6224 0.9458 -
0.5134 17900 0.1682 0.6007 0.9468 -
0.5163 18000 0.1685 0.5990 0.9476 -
0.5191 18100 0.2159 0.6031 0.9465 -
0.5220 18200 0.1772 0.6014 0.9482 -
0.5249 18300 0.1915 0.6040 0.9485 -
0.5277 18400 0.1838 0.6020 0.9485 -
0.5306 18500 0.1922 0.6198 0.9455 -
0.5335 18600 0.2625 0.6013 0.9471 -
0.5363 18700 0.1749 0.6006 0.9478 -
0.5392 18800 0.154 0.6084 0.9478 -
0.5421 18900 0.1681 0.6162 0.9479 -
0.5449 19000 0.2006 0.5959 0.9481 -
0.5478 19100 0.162 0.5910 0.9476 -
0.5507 19200 0.1558 0.5829 0.9500 -
0.5535 19300 0.1847 0.5866 0.9478 -
0.5564 19400 0.1702 0.5864 0.9494 -
0.5593 19500 0.1791 0.6086 0.9474 -
0.5622 19600 0.1601 0.5851 0.9490 -
0.5650 19700 0.1999 0.5939 0.9479 -
0.5679 19800 0.179 0.5996 0.9490 -
0.5708 19900 0.1723 0.6054 0.9456 -
0.5736 20000 0.2368 0.6067 0.9464 -
0.5765 20100 0.1903 0.5984 0.9473 -
0.5794 20200 0.1705 0.5928 0.9473 -
0.5822 20300 0.1571 0.5949 0.9464 -
0.5851 20400 0.1701 0.6009 0.9433 -
0.5880 20500 0.1319 0.5947 0.9473 -
0.5908 20600 0.1597 0.6022 0.9462 -
0.5937 20700 0.1543 0.6083 0.9461 -
0.5966 20800 0.1665 0.5959 0.9471 -
0.5994 20900 0.1956 0.5885 0.9468 -
0.6023 21000 0.146 0.5836 0.9471 -
0.6052 21100 0.153 0.5982 0.9438 -
0.6080 21200 0.1282 0.5898 0.9468 -
0.6109 21300 0.177 0.5761 0.9494 -
0.6138 21400 0.4914 0.5753 0.9496 -
0.6166 21500 0.4644 0.5833 0.9496 -
0.6195 21600 0.5082 0.5849 0.9502 -
0.6224 21700 0.5107 0.5743 0.9509 -
0.6253 21800 0.5229 0.5728 0.9499 -
0.6281 21900 0.4995 0.5659 0.9506 -
0.6310 22000 0.4214 0.5685 0.9508 -
0.6339 22100 0.5147 0.5692 0.9490 -
0.6367 22200 0.4704 0.5564 0.9515 -
0.6396 22300 0.5525 0.5605 0.9506 -
0.6425 22400 0.476 0.5599 0.9526 -
0.6453 22500 0.4799 0.5550 0.9517 -
0.6482 22600 0.4673 0.5651 0.9500 -
0.6511 22700 0.473 0.5556 0.9512 -
0.6539 22800 0.4194 0.5522 0.9506 -
0.6568 22900 0.487 0.5441 0.9532 -
0.6597 23000 0.4595 0.5492 0.9526 -
0.6625 23100 0.4526 0.5527 0.9519 -
0.6654 23200 0.4496 0.5467 0.9522 -
0.6683 23300 0.4539 0.5513 0.9525 -
0.6711 23400 0.4223 0.5473 0.9522 -
0.6740 23500 0.4955 0.5548 0.9506 -
0.6769 23600 0.4903 0.5498 0.9526 -
0.6797 23700 0.4565 0.5393 0.9552 -
0.6826 23800 0.4346 0.5436 0.9543 -
0.6855 23900 0.4921 0.5393 0.9544 -
0.6883 24000 0.4091 0.5386 0.9549 -
0.6912 24100 0.4693 0.5379 0.9561 -
0.6941 24200 0.4479 0.5384 0.9557 -
0.6970 24300 0.4646 0.5333 0.9558 -
0.6998 24400 0.3953 0.5451 0.9534 -
0.7027 24500 0.4193 0.5381 0.9557 -
0.7056 24600 0.4397 0.5298 0.9547 -
0.7084 24700 0.5095 0.5351 0.9553 -
0.7113 24800 0.4872 0.5316 0.9553 -
0.7142 24900 0.4571 0.5276 0.9550 -
0.7170 25000 0.5045 0.5335 0.9537 -
0.7199 25100 0.4686 0.5426 0.9509 -
0.7228 25200 0.4558 0.5369 0.9526 -
0.7256 25300 0.5359 0.5304 0.9532 -
0.7285 25400 0.4151 0.5360 0.9535 -
0.7314 25500 0.4559 0.5414 0.9512 -
0.7342 25600 0.4454 0.5321 0.9534 -
0.7371 25700 0.4951 0.5325 0.9543 -
0.7400 25800 0.4476 0.5281 0.9550 -
0.7428 25900 0.4266 0.5280 0.9563 -
0.7457 26000 0.4356 0.5307 0.9561 -
0.7486 26100 0.466 0.5261 0.9560 -
0.7514 26200 0.4873 0.5256 0.9555 -
0.7543 26300 0.4595 0.5178 0.9553 -
0.7572 26400 0.367 0.5218 0.9561 -
0.7601 26500 0.4913 0.5174 0.9560 -
0.7629 26600 0.4464 0.5138 0.9564 -
0.7658 26700 0.4651 0.5167 0.9552 -
0.7687 26800 0.3585 0.5182 0.9543 -
0.7715 26900 0.3361 0.5213 0.9561 -
0.7744 27000 0.4138 0.5211 0.9549 -
0.7773 27100 0.3869 0.5251 0.9535 -
0.7801 27200 0.4386 0.5257 0.9538 -
0.7830 27300 0.4725 0.5288 0.9525 -
0.7859 27400 0.4149 0.5338 0.9519 -
0.7887 27500 0.4375 0.5342 0.9520 -
0.7916 27600 0.3823 0.5314 0.9535 -
0.7945 27700 0.3709 0.5305 0.9528 -
0.7973 27800 0.4664 0.5307 0.9540 -
0.8002 27900 0.392 0.5292 0.9537 -
0.8031 28000 0.4618 0.5298 0.9526 -
0.8059 28100 0.3979 0.5287 0.9523 -
0.8088 28200 0.4698 0.5212 0.9540 -
0.8117 28300 0.3464 0.5210 0.9541 -
0.8145 28400 0.456 0.5210 0.9543 -
0.8174 28500 0.4301 0.5210 0.9550 -
0.8203 28600 0.4716 0.5183 0.9561 -
0.8232 28700 0.3684 0.5215 0.9550 -
0.8260 28800 0.4643 0.5176 0.9557 -
0.8289 28900 0.391 0.5223 0.9543 -
0.8318 29000 0.3916 0.5202 0.9529 -
0.8346 29100 0.3636 0.5223 0.9543 -
0.8375 29200 0.4098 0.5208 0.9538 -
0.8404 29300 0.4074 0.5216 0.9538 -
0.8432 29400 0.4149 0.5177 0.9535 -
0.8461 29500 0.3674 0.5167 0.9549 -
0.8490 29600 0.4507 0.5159 0.9557 -
0.8518 29700 0.4066 0.5141 0.9569 -
0.8547 29800 0.3429 0.5111 0.9563 -
0.8576 29900 0.4127 0.5152 0.9560 -
0.8604 30000 0.402 0.5132 0.9555 -
0.8633 30100 0.4486 0.5112 0.9553 -
0.8662 30200 0.4669 0.5103 0.9558 -
0.8690 30300 0.3961 0.5135 0.9549 -
0.8719 30400 0.4236 0.5130 0.9549 -
0.8748 30500 0.4198 0.5130 0.9550 -
0.8776 30600 0.3946 0.5099 0.9561 -
0.8805 30700 0.4098 0.5087 0.9552 -
0.8834 30800 0.3808 0.5095 0.9546 -
0.8863 30900 0.4149 0.5106 0.9544 -
0.8891 31000 0.4102 0.5106 0.9560 -
0.8920 31100 0.4009 0.5121 0.9553 -
0.8949 31200 0.3867 0.5090 0.9550 -
0.8977 31300 0.4151 0.5087 0.9553 -
0.9006 31400 0.4549 0.5074 0.9557 -
0.9035 31500 0.3757 0.5080 0.9558 -
0.9063 31600 0.3685 0.5088 0.9550 -
0.9092 31700 0.3433 0.5102 0.9549 -
0.9121 31800 0.3207 0.5082 0.9555 -
0.9149 31900 0.5076 0.5073 0.9553 -
0.9178 32000 0.4057 0.5056 0.9557 -
0.9207 32100 0.426 0.5071 0.9557 -
0.9235 32200 0.3753 0.5068 0.9561 -
0.9264 32300 0.3639 0.5062 0.9566 -
0.9293 32400 0.4551 0.5060 0.9564 -
0.9321 32500 0.3991 0.5042 0.9567 -
0.9350 32600 0.3713 0.5040 0.9572 -
0.9379 32700 0.4199 0.5042 0.9572 -
0.9407 32800 0.4355 0.5041 0.9567 -
0.9436 32900 0.4045 0.5050 0.9561 -
0.9465 33000 0.4686 0.5063 0.9560 -
0.9493 33100 0.4204 0.5067 0.9560 -
0.9522 33200 0.3856 0.5055 0.9557 -
0.9551 33300 0.371 0.5054 0.9553 -
0.9580 33400 0.3439 0.5055 0.9550 -
0.9608 33500 0.3519 0.5044 0.9550 -
0.9637 33600 0.4555 0.5041 0.9553 -
0.9666 33700 0.4009 0.5035 0.9555 -
0.9694 33800 0.4453 0.5035 0.9557 -
0.9723 33900 0.3833 0.5036 0.9552 -
0.9752 34000 0.4048 0.5027 0.9553 -
0.9780 34100 0.4663 0.5034 0.9547 -
0.9809 34200 0.3675 0.5031 0.9547 -
0.9838 34300 0.4779 0.5032 0.9552 -
0.9866 34400 0.504 0.5030 0.9553 -
0.9895 34500 0.4018 0.5028 0.9555 -
0.9924 34600 0.4258 0.5026 0.9557 -
0.9952 34700 0.4134 0.5024 0.9557 -
0.9981 34800 0.3956 0.5025 0.9557 -

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
13
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ravi259/distilroberta-base-sentence-transformer_finetuned

Finetuned
(598)
this model

Datasets used to train ravi259/distilroberta-base-sentence-transformer_finetuned

Evaluation results