SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the qqp_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ravi259/distilroberta-base-sentence-transformer_finetuned")
# Run inference
sentences = [
'A dog is in the water.',
'Wet brown dog swims towards camera.',
'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
all-nli-dev
andall-nli-test
- Evaluated with
TripletEvaluator
Metric | all-nli-dev | all-nli-test |
---|---|---|
cosine_accuracy | 0.9557 | 0.9048 |
Training Details
Training Dataset
qqp_triplets
- Dataset: qqp_triplets at f475d9c
- Size: 101,762 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy |
---|---|---|---|---|---|
0.0029 | 100 | 4.8503 | - | - | - |
0.0057 | 200 | 4.8595 | - | - | - |
0.0086 | 300 | 4.8404 | - | - | - |
0.0115 | 400 | 4.7216 | - | - | - |
0.0143 | 500 | 4.5376 | - | - | - |
0.0172 | 600 | 4.2746 | - | - | - |
0.0201 | 700 | 3.8115 | - | - | - |
0.0229 | 800 | 3.4799 | - | - | - |
0.0258 | 900 | 3.3466 | - | - | - |
0.0287 | 1000 | 3.1246 | - | - | - |
0.0315 | 1100 | 3.0024 | - | - | - |
0.0344 | 1200 | 2.6864 | - | - | - |
0.0373 | 1300 | 2.6236 | - | - | - |
0.0402 | 1400 | 2.312 | - | - | - |
0.0430 | 1500 | 2.2408 | - | - | - |
0.0459 | 1600 | 2.0932 | - | - | - |
0.0488 | 1700 | 1.9609 | - | - | - |
0.0516 | 1800 | 1.9065 | - | - | - |
0.0545 | 1900 | 2.0037 | - | - | - |
0.0574 | 2000 | 1.8347 | - | - | - |
0.0602 | 2100 | 1.7955 | - | - | - |
-1 | -1 | - | - | 0.8873 | 0.9048 |
0.0029 | 100 | 1.6861 | 1.5452 | 0.8873 | - |
0.0057 | 200 | 1.7841 | 1.5419 | 0.8873 | - |
0.0086 | 300 | 1.7054 | 1.5365 | 0.8878 | - |
0.0115 | 400 | 1.7229 | 1.5309 | 0.8885 | - |
0.0143 | 500 | 1.569 | 1.5230 | 0.8885 | - |
0.0172 | 600 | 1.7132 | 1.5100 | 0.8902 | - |
0.0201 | 700 | 1.6673 | - | - | - |
0.0143 | 500 | 1.6086 | 1.4758 | 0.8917 | - |
0.0287 | 1000 | 1.562 | 1.4129 | 0.8958 | - |
0.0430 | 1500 | 1.4604 | 1.3243 | 0.8990 | - |
0.0574 | 2000 | 1.2731 | 1.2694 | 0.9014 | - |
0.0717 | 2500 | 1.3045 | 1.1753 | 0.9058 | - |
0.0860 | 3000 | 1.261 | 1.0945 | 0.9139 | - |
0.1004 | 3500 | 1.2035 | 1.0355 | 0.9201 | - |
0.1147 | 4000 | 1.1648 | 0.9687 | 0.9242 | - |
0.1291 | 4500 | 1.1255 | 0.9390 | 0.9256 | - |
0.1434 | 5000 | 1.0097 | 0.9202 | 0.9228 | - |
0.1577 | 5500 | 0.997 | 0.8762 | 0.9297 | - |
0.1721 | 6000 | 0.9698 | 0.8487 | 0.9338 | - |
0.1864 | 6500 | 0.8949 | 0.8460 | 0.9339 | - |
0.2008 | 7000 | 0.9007 | 0.8203 | 0.9345 | - |
0.2151 | 7500 | 0.8834 | 0.8189 | 0.9353 | - |
0.2294 | 8000 | 0.8699 | 0.8025 | 0.9359 | - |
0.2438 | 8500 | 0.8574 | 0.7930 | 0.9371 | - |
0.2868 | 10000 | 0.5934 | - | - | - |
0.5736 | 20000 | 0.6866 | - | - | - |
0.0029 | 100 | 0.5108 | 0.6478 | 0.9474 | - |
0.0057 | 200 | 0.6647 | 0.6448 | 0.9479 | - |
0.0086 | 300 | 0.6496 | 0.6370 | 0.9481 | - |
0.0115 | 400 | 0.558 | 0.6321 | 0.9490 | - |
0.0143 | 500 | 0.5273 | 0.6300 | 0.9484 | - |
0.0172 | 600 | 0.5374 | 0.6234 | 0.9491 | - |
0.0201 | 700 | 0.5382 | 0.6216 | 0.9473 | - |
0.0229 | 800 | 0.5819 | 0.6190 | 0.9484 | - |
0.0258 | 900 | 0.5833 | 0.6116 | 0.9490 | - |
0.0287 | 1000 | 0.4391 | 0.6126 | 0.9476 | - |
0.0315 | 1100 | 0.6385 | 0.6041 | 0.9484 | - |
0.0344 | 1200 | 0.5859 | 0.5952 | 0.9519 | - |
0.0373 | 1300 | 0.5665 | 0.5914 | 0.9505 | - |
0.0402 | 1400 | 0.5657 | 0.5939 | 0.9485 | - |
0.0430 | 1500 | 0.5685 | 0.6102 | 0.9481 | - |
0.0459 | 1600 | 0.5033 | 0.5939 | 0.9491 | - |
0.0488 | 1700 | 0.4487 | 0.5958 | 0.9485 | - |
0.0516 | 1800 | 0.4801 | 0.6010 | 0.9461 | - |
0.0545 | 1900 | 0.5075 | 0.6012 | 0.9484 | - |
0.0574 | 2000 | 0.518 | 0.5895 | 0.9496 | - |
0.0602 | 2100 | 0.4062 | 0.5886 | 0.9484 | - |
0.0631 | 2200 | 0.4278 | 0.6018 | 0.9467 | - |
0.0660 | 2300 | 0.4356 | 0.6112 | 0.9473 | - |
0.0688 | 2400 | 0.4446 | 0.6068 | 0.9503 | - |
0.0717 | 2500 | 0.4782 | 0.6000 | 0.9481 | - |
0.0746 | 2600 | 0.4841 | 0.6058 | 0.9511 | - |
0.0774 | 2700 | 0.4566 | 0.5983 | 0.9508 | - |
0.0803 | 2800 | 0.4021 | 0.6063 | 0.9491 | - |
0.0832 | 2900 | 0.5318 | 0.6231 | 0.9499 | - |
0.0860 | 3000 | 0.4938 | 0.6310 | 0.9465 | - |
0.0889 | 3100 | 0.5207 | 0.6022 | 0.9520 | - |
0.0918 | 3200 | 0.4585 | 0.6072 | 0.9517 | - |
0.0946 | 3300 | 0.4797 | 0.6051 | 0.9509 | - |
0.0975 | 3400 | 0.4313 | 0.6169 | 0.9494 | - |
0.1004 | 3500 | 0.5005 | 0.6386 | 0.9497 | - |
0.1033 | 3600 | 0.4712 | 0.6337 | 0.9440 | - |
0.1061 | 3700 | 0.4868 | 0.6309 | 0.9491 | - |
0.1090 | 3800 | 0.5115 | 0.6558 | 0.9476 | - |
0.1119 | 3900 | 0.4655 | 0.6351 | 0.9482 | - |
0.1147 | 4000 | 0.4614 | 0.6397 | 0.9470 | - |
0.1176 | 4100 | 0.5194 | 0.6409 | 0.9449 | - |
0.1205 | 4200 | 0.4946 | 0.6423 | 0.9453 | - |
0.1233 | 4300 | 0.5083 | 0.6323 | 0.9474 | - |
0.1262 | 4400 | 0.4596 | 0.6240 | 0.9481 | - |
0.1291 | 4500 | 0.4472 | 0.6323 | 0.9487 | - |
0.1319 | 4600 | 0.4135 | 0.6158 | 0.9525 | - |
0.1348 | 4700 | 0.4167 | 0.6240 | 0.9482 | - |
0.1377 | 4800 | 0.4163 | 0.6278 | 0.9484 | - |
0.1405 | 4900 | 0.3373 | 0.6335 | 0.9468 | - |
0.1434 | 5000 | 0.4124 | 0.6374 | 0.9443 | - |
0.1463 | 5100 | 0.4058 | 0.6522 | 0.9456 | - |
0.1491 | 5200 | 0.4267 | 0.6638 | 0.9435 | - |
0.1520 | 5300 | 0.4091 | 0.6874 | 0.9399 | - |
0.1549 | 5400 | 0.3793 | 0.6383 | 0.9482 | - |
0.1577 | 5500 | 0.3941 | 0.6700 | 0.9435 | - |
0.1606 | 5600 | 0.4212 | 0.6721 | 0.9468 | - |
0.1635 | 5700 | 0.3591 | 0.6548 | 0.9453 | - |
0.1664 | 5800 | 0.3368 | 0.6837 | 0.9433 | - |
0.1692 | 5900 | 0.4446 | 0.6728 | 0.9438 | - |
0.1721 | 6000 | 0.3587 | 0.6567 | 0.9482 | - |
0.1750 | 6100 | 0.2734 | 0.6608 | 0.9471 | - |
0.1778 | 6200 | 0.3344 | 0.6621 | 0.9452 | - |
0.1807 | 6300 | 0.3618 | 0.6798 | 0.9408 | - |
0.1836 | 6400 | 0.3687 | 0.6727 | 0.9412 | - |
0.1864 | 6500 | 0.3313 | 0.6448 | 0.9449 | - |
0.1893 | 6600 | 0.3492 | 0.6545 | 0.9440 | - |
0.1922 | 6700 | 0.3462 | 0.6598 | 0.9446 | - |
0.1950 | 6800 | 0.3201 | 0.6751 | 0.9424 | - |
0.1979 | 6900 | 0.3084 | 0.6400 | 0.9430 | - |
0.2008 | 7000 | 0.3034 | 0.6589 | 0.9453 | - |
0.2036 | 7100 | 0.3229 | 0.6881 | 0.9427 | - |
0.2065 | 7200 | 0.2896 | 0.6497 | 0.9435 | - |
0.2094 | 7300 | 0.3159 | 0.6333 | 0.9471 | - |
0.2122 | 7400 | 0.2931 | 0.6273 | 0.9470 | - |
0.2151 | 7500 | 0.2994 | 0.6412 | 0.9464 | - |
0.2180 | 7600 | 0.2507 | 0.6144 | 0.9478 | - |
0.2208 | 7700 | 0.266 | 0.6523 | 0.9421 | - |
0.2237 | 7800 | 0.2872 | 0.6294 | 0.9464 | - |
0.2266 | 7900 | 0.2913 | 0.6471 | 0.9461 | - |
0.2294 | 8000 | 0.2095 | 0.6418 | 0.9443 | - |
0.2323 | 8100 | 0.2603 | 0.6900 | 0.9383 | - |
0.2352 | 8200 | 0.2553 | 0.6363 | 0.9437 | - |
0.2381 | 8300 | 0.309 | 0.6238 | 0.9452 | - |
0.2409 | 8400 | 0.2574 | 0.6488 | 0.9414 | - |
0.2438 | 8500 | 0.2083 | 0.6528 | 0.9444 | - |
0.2467 | 8600 | 0.2371 | 0.6723 | 0.9400 | - |
0.2495 | 8700 | 0.2962 | 0.6354 | 0.9426 | - |
0.2524 | 8800 | 0.4068 | 0.6418 | 0.9420 | - |
0.2553 | 8900 | 0.2896 | 0.6188 | 0.9447 | - |
0.2581 | 9000 | 0.3449 | 0.6375 | 0.9424 | - |
0.2610 | 9100 | 0.308 | 0.6172 | 0.9470 | - |
0.2639 | 9200 | 0.4177 | 0.6231 | 0.9458 | - |
0.2667 | 9300 | 0.3373 | 0.6260 | 0.9488 | - |
0.2696 | 9400 | 0.3533 | 0.6268 | 0.9496 | - |
0.2725 | 9500 | 0.3793 | 0.6539 | 0.9455 | - |
0.2753 | 9600 | 0.3553 | 0.6253 | 0.9443 | - |
0.2782 | 9700 | 0.3545 | 0.6050 | 0.9471 | - |
0.2811 | 9800 | 0.3108 | 0.6228 | 0.9459 | - |
0.2839 | 9900 | 0.414 | 0.6265 | 0.9467 | - |
0.2868 | 10000 | 0.3686 | 0.6263 | 0.9459 | - |
0.2897 | 10100 | 0.366 | 0.6178 | 0.9453 | - |
0.2925 | 10200 | 0.3388 | 0.6428 | 0.9429 | - |
0.2954 | 10300 | 0.3805 | 0.6244 | 0.9473 | - |
0.2983 | 10400 | 0.3446 | 0.6195 | 0.9458 | - |
0.3012 | 10500 | 0.2602 | 0.6242 | 0.9456 | - |
0.3040 | 10600 | 0.328 | 0.6323 | 0.9438 | - |
0.3069 | 10700 | 0.3151 | 0.6179 | 0.9485 | - |
0.3098 | 10800 | 0.2682 | 0.6179 | 0.9465 | - |
0.3126 | 10900 | 0.3493 | 0.6365 | 0.9435 | - |
0.3155 | 11000 | 0.3194 | 0.6297 | 0.9449 | - |
0.3184 | 11100 | 0.2754 | 0.6478 | 0.9397 | - |
0.3212 | 11200 | 0.3181 | 0.6163 | 0.9450 | - |
0.3241 | 11300 | 0.2817 | 0.6100 | 0.9441 | - |
0.3270 | 11400 | 0.3091 | 0.5994 | 0.9465 | - |
0.3298 | 11500 | 0.2963 | 0.6135 | 0.9468 | - |
0.3327 | 11600 | 0.2824 | 0.6086 | 0.9455 | - |
0.3356 | 11700 | 0.2495 | 0.6214 | 0.9473 | - |
0.3384 | 11800 | 0.3144 | 0.6338 | 0.9424 | - |
0.3413 | 11900 | 0.2904 | 0.6220 | 0.9459 | - |
0.3442 | 12000 | 0.2964 | 0.6120 | 0.9478 | - |
0.3470 | 12100 | 0.2887 | 0.6104 | 0.9471 | - |
0.3499 | 12200 | 0.2619 | 0.6152 | 0.9476 | - |
0.3528 | 12300 | 0.3758 | 0.6147 | 0.9485 | - |
0.3556 | 12400 | 0.2787 | 0.6149 | 0.9465 | - |
0.3585 | 12500 | 0.2811 | 0.6044 | 0.9496 | - |
0.3614 | 12600 | 0.2409 | 0.6021 | 0.9487 | - |
0.3643 | 12700 | 0.2835 | 0.6113 | 0.9474 | - |
0.3671 | 12800 | 0.3025 | 0.6181 | 0.9467 | - |
0.3700 | 12900 | 0.2741 | 0.6016 | 0.9500 | - |
0.3729 | 13000 | 0.2868 | 0.5940 | 0.9505 | - |
0.3757 | 13100 | 0.2739 | 0.6104 | 0.9478 | - |
0.3786 | 13200 | 0.2912 | 0.6229 | 0.9456 | - |
0.3815 | 13300 | 0.3091 | 0.6329 | 0.9443 | - |
0.3843 | 13400 | 0.2513 | 0.6309 | 0.9414 | - |
0.3872 | 13500 | 0.2921 | 0.6273 | 0.9437 | - |
0.3901 | 13600 | 0.272 | 0.6149 | 0.9444 | - |
0.3929 | 13700 | 0.2553 | 0.6398 | 0.9421 | - |
0.3958 | 13800 | 0.2647 | 0.6282 | 0.9465 | - |
0.3987 | 13900 | 0.2125 | 0.6196 | 0.9467 | - |
0.4015 | 14000 | 0.2639 | 0.6072 | 0.9423 | - |
0.4044 | 14100 | 0.2206 | 0.6136 | 0.9446 | - |
0.4073 | 14200 | 0.2165 | 0.6117 | 0.9459 | - |
0.4101 | 14300 | 0.1993 | 0.6256 | 0.9406 | - |
0.4130 | 14400 | 0.2288 | 0.6332 | 0.9447 | - |
0.4159 | 14500 | 0.2434 | 0.6109 | 0.9435 | - |
0.4187 | 14600 | 0.2274 | 0.6106 | 0.9458 | - |
0.4216 | 14700 | 0.2088 | 0.5842 | 0.9478 | - |
0.4245 | 14800 | 0.2133 | 0.6151 | 0.9458 | - |
0.4274 | 14900 | 0.2033 | 0.5970 | 0.9464 | - |
0.4302 | 15000 | 0.2469 | 0.6124 | 0.9461 | - |
0.4331 | 15100 | 0.2415 | 0.6001 | 0.9478 | - |
0.4360 | 15200 | 0.1785 | 0.6013 | 0.9465 | - |
0.4388 | 15300 | 0.2257 | 0.6015 | 0.9465 | - |
0.4417 | 15400 | 0.1985 | 0.5986 | 0.9491 | - |
0.4446 | 15500 | 0.2581 | 0.6048 | 0.9502 | - |
0.4474 | 15600 | 0.2702 | 0.6154 | 0.9474 | - |
0.4503 | 15700 | 0.2028 | 0.6003 | 0.9493 | - |
0.4532 | 15800 | 0.1722 | 0.6275 | 0.9450 | - |
0.4560 | 15900 | 0.1977 | 0.6310 | 0.9432 | - |
0.4589 | 16000 | 0.2191 | 0.6123 | 0.9482 | - |
0.4618 | 16100 | 0.2124 | 0.6260 | 0.9458 | - |
0.4646 | 16200 | 0.2143 | 0.6099 | 0.9474 | - |
0.4675 | 16300 | 0.2018 | 0.5997 | 0.9462 | - |
0.4704 | 16400 | 0.1887 | 0.6123 | 0.9449 | - |
0.4732 | 16500 | 0.2036 | 0.6009 | 0.9505 | - |
0.4761 | 16600 | 0.1788 | 0.5969 | 0.9508 | - |
0.4790 | 16700 | 0.2213 | 0.6137 | 0.9464 | - |
0.4818 | 16800 | 0.2031 | 0.5984 | 0.9488 | - |
0.4847 | 16900 | 0.1904 | 0.6026 | 0.9488 | - |
0.4876 | 17000 | 0.173 | 0.6161 | 0.9488 | - |
0.4904 | 17100 | 0.2011 | 0.6114 | 0.9456 | - |
0.4933 | 17200 | 0.2513 | 0.5981 | 0.9482 | - |
0.4962 | 17300 | 0.2176 | 0.5912 | 0.9503 | - |
0.4991 | 17400 | 0.1753 | 0.5911 | 0.9506 | - |
0.5019 | 17500 | 0.227 | 0.6049 | 0.9467 | - |
0.5048 | 17600 | 0.2112 | 0.5998 | 0.9473 | - |
0.5077 | 17700 | 0.2064 | 0.5989 | 0.9478 | - |
0.5105 | 17800 | 0.1722 | 0.6224 | 0.9458 | - |
0.5134 | 17900 | 0.1682 | 0.6007 | 0.9468 | - |
0.5163 | 18000 | 0.1685 | 0.5990 | 0.9476 | - |
0.5191 | 18100 | 0.2159 | 0.6031 | 0.9465 | - |
0.5220 | 18200 | 0.1772 | 0.6014 | 0.9482 | - |
0.5249 | 18300 | 0.1915 | 0.6040 | 0.9485 | - |
0.5277 | 18400 | 0.1838 | 0.6020 | 0.9485 | - |
0.5306 | 18500 | 0.1922 | 0.6198 | 0.9455 | - |
0.5335 | 18600 | 0.2625 | 0.6013 | 0.9471 | - |
0.5363 | 18700 | 0.1749 | 0.6006 | 0.9478 | - |
0.5392 | 18800 | 0.154 | 0.6084 | 0.9478 | - |
0.5421 | 18900 | 0.1681 | 0.6162 | 0.9479 | - |
0.5449 | 19000 | 0.2006 | 0.5959 | 0.9481 | - |
0.5478 | 19100 | 0.162 | 0.5910 | 0.9476 | - |
0.5507 | 19200 | 0.1558 | 0.5829 | 0.9500 | - |
0.5535 | 19300 | 0.1847 | 0.5866 | 0.9478 | - |
0.5564 | 19400 | 0.1702 | 0.5864 | 0.9494 | - |
0.5593 | 19500 | 0.1791 | 0.6086 | 0.9474 | - |
0.5622 | 19600 | 0.1601 | 0.5851 | 0.9490 | - |
0.5650 | 19700 | 0.1999 | 0.5939 | 0.9479 | - |
0.5679 | 19800 | 0.179 | 0.5996 | 0.9490 | - |
0.5708 | 19900 | 0.1723 | 0.6054 | 0.9456 | - |
0.5736 | 20000 | 0.2368 | 0.6067 | 0.9464 | - |
0.5765 | 20100 | 0.1903 | 0.5984 | 0.9473 | - |
0.5794 | 20200 | 0.1705 | 0.5928 | 0.9473 | - |
0.5822 | 20300 | 0.1571 | 0.5949 | 0.9464 | - |
0.5851 | 20400 | 0.1701 | 0.6009 | 0.9433 | - |
0.5880 | 20500 | 0.1319 | 0.5947 | 0.9473 | - |
0.5908 | 20600 | 0.1597 | 0.6022 | 0.9462 | - |
0.5937 | 20700 | 0.1543 | 0.6083 | 0.9461 | - |
0.5966 | 20800 | 0.1665 | 0.5959 | 0.9471 | - |
0.5994 | 20900 | 0.1956 | 0.5885 | 0.9468 | - |
0.6023 | 21000 | 0.146 | 0.5836 | 0.9471 | - |
0.6052 | 21100 | 0.153 | 0.5982 | 0.9438 | - |
0.6080 | 21200 | 0.1282 | 0.5898 | 0.9468 | - |
0.6109 | 21300 | 0.177 | 0.5761 | 0.9494 | - |
0.6138 | 21400 | 0.4914 | 0.5753 | 0.9496 | - |
0.6166 | 21500 | 0.4644 | 0.5833 | 0.9496 | - |
0.6195 | 21600 | 0.5082 | 0.5849 | 0.9502 | - |
0.6224 | 21700 | 0.5107 | 0.5743 | 0.9509 | - |
0.6253 | 21800 | 0.5229 | 0.5728 | 0.9499 | - |
0.6281 | 21900 | 0.4995 | 0.5659 | 0.9506 | - |
0.6310 | 22000 | 0.4214 | 0.5685 | 0.9508 | - |
0.6339 | 22100 | 0.5147 | 0.5692 | 0.9490 | - |
0.6367 | 22200 | 0.4704 | 0.5564 | 0.9515 | - |
0.6396 | 22300 | 0.5525 | 0.5605 | 0.9506 | - |
0.6425 | 22400 | 0.476 | 0.5599 | 0.9526 | - |
0.6453 | 22500 | 0.4799 | 0.5550 | 0.9517 | - |
0.6482 | 22600 | 0.4673 | 0.5651 | 0.9500 | - |
0.6511 | 22700 | 0.473 | 0.5556 | 0.9512 | - |
0.6539 | 22800 | 0.4194 | 0.5522 | 0.9506 | - |
0.6568 | 22900 | 0.487 | 0.5441 | 0.9532 | - |
0.6597 | 23000 | 0.4595 | 0.5492 | 0.9526 | - |
0.6625 | 23100 | 0.4526 | 0.5527 | 0.9519 | - |
0.6654 | 23200 | 0.4496 | 0.5467 | 0.9522 | - |
0.6683 | 23300 | 0.4539 | 0.5513 | 0.9525 | - |
0.6711 | 23400 | 0.4223 | 0.5473 | 0.9522 | - |
0.6740 | 23500 | 0.4955 | 0.5548 | 0.9506 | - |
0.6769 | 23600 | 0.4903 | 0.5498 | 0.9526 | - |
0.6797 | 23700 | 0.4565 | 0.5393 | 0.9552 | - |
0.6826 | 23800 | 0.4346 | 0.5436 | 0.9543 | - |
0.6855 | 23900 | 0.4921 | 0.5393 | 0.9544 | - |
0.6883 | 24000 | 0.4091 | 0.5386 | 0.9549 | - |
0.6912 | 24100 | 0.4693 | 0.5379 | 0.9561 | - |
0.6941 | 24200 | 0.4479 | 0.5384 | 0.9557 | - |
0.6970 | 24300 | 0.4646 | 0.5333 | 0.9558 | - |
0.6998 | 24400 | 0.3953 | 0.5451 | 0.9534 | - |
0.7027 | 24500 | 0.4193 | 0.5381 | 0.9557 | - |
0.7056 | 24600 | 0.4397 | 0.5298 | 0.9547 | - |
0.7084 | 24700 | 0.5095 | 0.5351 | 0.9553 | - |
0.7113 | 24800 | 0.4872 | 0.5316 | 0.9553 | - |
0.7142 | 24900 | 0.4571 | 0.5276 | 0.9550 | - |
0.7170 | 25000 | 0.5045 | 0.5335 | 0.9537 | - |
0.7199 | 25100 | 0.4686 | 0.5426 | 0.9509 | - |
0.7228 | 25200 | 0.4558 | 0.5369 | 0.9526 | - |
0.7256 | 25300 | 0.5359 | 0.5304 | 0.9532 | - |
0.7285 | 25400 | 0.4151 | 0.5360 | 0.9535 | - |
0.7314 | 25500 | 0.4559 | 0.5414 | 0.9512 | - |
0.7342 | 25600 | 0.4454 | 0.5321 | 0.9534 | - |
0.7371 | 25700 | 0.4951 | 0.5325 | 0.9543 | - |
0.7400 | 25800 | 0.4476 | 0.5281 | 0.9550 | - |
0.7428 | 25900 | 0.4266 | 0.5280 | 0.9563 | - |
0.7457 | 26000 | 0.4356 | 0.5307 | 0.9561 | - |
0.7486 | 26100 | 0.466 | 0.5261 | 0.9560 | - |
0.7514 | 26200 | 0.4873 | 0.5256 | 0.9555 | - |
0.7543 | 26300 | 0.4595 | 0.5178 | 0.9553 | - |
0.7572 | 26400 | 0.367 | 0.5218 | 0.9561 | - |
0.7601 | 26500 | 0.4913 | 0.5174 | 0.9560 | - |
0.7629 | 26600 | 0.4464 | 0.5138 | 0.9564 | - |
0.7658 | 26700 | 0.4651 | 0.5167 | 0.9552 | - |
0.7687 | 26800 | 0.3585 | 0.5182 | 0.9543 | - |
0.7715 | 26900 | 0.3361 | 0.5213 | 0.9561 | - |
0.7744 | 27000 | 0.4138 | 0.5211 | 0.9549 | - |
0.7773 | 27100 | 0.3869 | 0.5251 | 0.9535 | - |
0.7801 | 27200 | 0.4386 | 0.5257 | 0.9538 | - |
0.7830 | 27300 | 0.4725 | 0.5288 | 0.9525 | - |
0.7859 | 27400 | 0.4149 | 0.5338 | 0.9519 | - |
0.7887 | 27500 | 0.4375 | 0.5342 | 0.9520 | - |
0.7916 | 27600 | 0.3823 | 0.5314 | 0.9535 | - |
0.7945 | 27700 | 0.3709 | 0.5305 | 0.9528 | - |
0.7973 | 27800 | 0.4664 | 0.5307 | 0.9540 | - |
0.8002 | 27900 | 0.392 | 0.5292 | 0.9537 | - |
0.8031 | 28000 | 0.4618 | 0.5298 | 0.9526 | - |
0.8059 | 28100 | 0.3979 | 0.5287 | 0.9523 | - |
0.8088 | 28200 | 0.4698 | 0.5212 | 0.9540 | - |
0.8117 | 28300 | 0.3464 | 0.5210 | 0.9541 | - |
0.8145 | 28400 | 0.456 | 0.5210 | 0.9543 | - |
0.8174 | 28500 | 0.4301 | 0.5210 | 0.9550 | - |
0.8203 | 28600 | 0.4716 | 0.5183 | 0.9561 | - |
0.8232 | 28700 | 0.3684 | 0.5215 | 0.9550 | - |
0.8260 | 28800 | 0.4643 | 0.5176 | 0.9557 | - |
0.8289 | 28900 | 0.391 | 0.5223 | 0.9543 | - |
0.8318 | 29000 | 0.3916 | 0.5202 | 0.9529 | - |
0.8346 | 29100 | 0.3636 | 0.5223 | 0.9543 | - |
0.8375 | 29200 | 0.4098 | 0.5208 | 0.9538 | - |
0.8404 | 29300 | 0.4074 | 0.5216 | 0.9538 | - |
0.8432 | 29400 | 0.4149 | 0.5177 | 0.9535 | - |
0.8461 | 29500 | 0.3674 | 0.5167 | 0.9549 | - |
0.8490 | 29600 | 0.4507 | 0.5159 | 0.9557 | - |
0.8518 | 29700 | 0.4066 | 0.5141 | 0.9569 | - |
0.8547 | 29800 | 0.3429 | 0.5111 | 0.9563 | - |
0.8576 | 29900 | 0.4127 | 0.5152 | 0.9560 | - |
0.8604 | 30000 | 0.402 | 0.5132 | 0.9555 | - |
0.8633 | 30100 | 0.4486 | 0.5112 | 0.9553 | - |
0.8662 | 30200 | 0.4669 | 0.5103 | 0.9558 | - |
0.8690 | 30300 | 0.3961 | 0.5135 | 0.9549 | - |
0.8719 | 30400 | 0.4236 | 0.5130 | 0.9549 | - |
0.8748 | 30500 | 0.4198 | 0.5130 | 0.9550 | - |
0.8776 | 30600 | 0.3946 | 0.5099 | 0.9561 | - |
0.8805 | 30700 | 0.4098 | 0.5087 | 0.9552 | - |
0.8834 | 30800 | 0.3808 | 0.5095 | 0.9546 | - |
0.8863 | 30900 | 0.4149 | 0.5106 | 0.9544 | - |
0.8891 | 31000 | 0.4102 | 0.5106 | 0.9560 | - |
0.8920 | 31100 | 0.4009 | 0.5121 | 0.9553 | - |
0.8949 | 31200 | 0.3867 | 0.5090 | 0.9550 | - |
0.8977 | 31300 | 0.4151 | 0.5087 | 0.9553 | - |
0.9006 | 31400 | 0.4549 | 0.5074 | 0.9557 | - |
0.9035 | 31500 | 0.3757 | 0.5080 | 0.9558 | - |
0.9063 | 31600 | 0.3685 | 0.5088 | 0.9550 | - |
0.9092 | 31700 | 0.3433 | 0.5102 | 0.9549 | - |
0.9121 | 31800 | 0.3207 | 0.5082 | 0.9555 | - |
0.9149 | 31900 | 0.5076 | 0.5073 | 0.9553 | - |
0.9178 | 32000 | 0.4057 | 0.5056 | 0.9557 | - |
0.9207 | 32100 | 0.426 | 0.5071 | 0.9557 | - |
0.9235 | 32200 | 0.3753 | 0.5068 | 0.9561 | - |
0.9264 | 32300 | 0.3639 | 0.5062 | 0.9566 | - |
0.9293 | 32400 | 0.4551 | 0.5060 | 0.9564 | - |
0.9321 | 32500 | 0.3991 | 0.5042 | 0.9567 | - |
0.9350 | 32600 | 0.3713 | 0.5040 | 0.9572 | - |
0.9379 | 32700 | 0.4199 | 0.5042 | 0.9572 | - |
0.9407 | 32800 | 0.4355 | 0.5041 | 0.9567 | - |
0.9436 | 32900 | 0.4045 | 0.5050 | 0.9561 | - |
0.9465 | 33000 | 0.4686 | 0.5063 | 0.9560 | - |
0.9493 | 33100 | 0.4204 | 0.5067 | 0.9560 | - |
0.9522 | 33200 | 0.3856 | 0.5055 | 0.9557 | - |
0.9551 | 33300 | 0.371 | 0.5054 | 0.9553 | - |
0.9580 | 33400 | 0.3439 | 0.5055 | 0.9550 | - |
0.9608 | 33500 | 0.3519 | 0.5044 | 0.9550 | - |
0.9637 | 33600 | 0.4555 | 0.5041 | 0.9553 | - |
0.9666 | 33700 | 0.4009 | 0.5035 | 0.9555 | - |
0.9694 | 33800 | 0.4453 | 0.5035 | 0.9557 | - |
0.9723 | 33900 | 0.3833 | 0.5036 | 0.9552 | - |
0.9752 | 34000 | 0.4048 | 0.5027 | 0.9553 | - |
0.9780 | 34100 | 0.4663 | 0.5034 | 0.9547 | - |
0.9809 | 34200 | 0.3675 | 0.5031 | 0.9547 | - |
0.9838 | 34300 | 0.4779 | 0.5032 | 0.9552 | - |
0.9866 | 34400 | 0.504 | 0.5030 | 0.9553 | - |
0.9895 | 34500 | 0.4018 | 0.5028 | 0.9555 | - |
0.9924 | 34600 | 0.4258 | 0.5026 | 0.9557 | - |
0.9952 | 34700 | 0.4134 | 0.5024 | 0.9557 | - |
0.9981 | 34800 | 0.3956 | 0.5025 | 0.9557 | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ravi259/distilroberta-base-sentence-transformer_finetuned
Base model
distilbert/distilroberta-baseDatasets used to train ravi259/distilroberta-base-sentence-transformer_finetuned
Evaluation results
- Cosine Accuracy on all nli devself-reported0.956
- Cosine Accuracy on all nli testself-reported0.905