rayhanozzy's picture
End of training
8243065
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.58125

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5857
  • Accuracy: 0.5813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 80 1.4085 0.5062
No log 2.0 160 1.5462 0.5062
No log 3.0 240 1.5687 0.525
No log 4.0 320 1.5465 0.5625
No log 5.0 400 1.7599 0.5
No log 6.0 480 1.8047 0.5312
0.244 7.0 560 1.8441 0.525
0.244 8.0 640 1.7620 0.5375
0.244 9.0 720 1.5618 0.5563
0.244 10.0 800 1.8267 0.5125
0.244 11.0 880 1.5343 0.6
0.244 12.0 960 1.8340 0.5375
0.237 13.0 1040 1.7273 0.575
0.237 14.0 1120 1.7158 0.5563
0.237 15.0 1200 1.6075 0.55
0.237 16.0 1280 1.6131 0.5687
0.237 17.0 1360 1.8439 0.55
0.237 18.0 1440 1.9079 0.5188
0.1695 19.0 1520 1.7325 0.5687
0.1695 20.0 1600 1.5776 0.5938

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3