rayhanozzy's picture
End of training
7749379
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.59375

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3020
  • Accuracy: 0.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 80 1.3711 0.4313
No log 2.0 160 1.2946 0.5188
No log 3.0 240 1.1760 0.5563
No log 4.0 320 1.3317 0.5
No log 5.0 400 1.3201 0.4938
No log 6.0 480 1.2809 0.5375
0.8929 7.0 560 1.3645 0.5
0.8929 8.0 640 1.2415 0.5563
0.8929 9.0 720 1.4341 0.5125
0.8929 10.0 800 1.3027 0.5625
0.8929 11.0 880 1.3131 0.5813
0.8929 12.0 960 1.4144 0.525
0.3836 13.0 1040 1.3987 0.5563
0.3836 14.0 1120 1.3167 0.5938
0.3836 15.0 1200 1.3588 0.6
0.3836 16.0 1280 1.2747 0.625
0.3836 17.0 1360 1.4555 0.575
0.3836 18.0 1440 1.3795 0.5875
0.2078 19.0 1520 1.5430 0.525
0.2078 20.0 1600 1.4164 0.5813

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3