See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- a9370d8bc6e0e8be_train_data.json
ds_type: json
format: custom
path: /root/G.O.D-test/core/data/a9370d8bc6e0e8be_train_data.json
type:
field_input: Complex_CoT
field_instruction: Question
field_output: Response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 10
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: souging/702609de-5f88-479b-8c42-393d171935f2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/a9370d8bc6e0e8be_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9d95b060-41cc-4d8a-b03d-190792edce50
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9d95b060-41cc-4d8a-b03d-190792edce50
warmup_steps: 100
weight_decay: 0.01
xformers_attention: null
702609de-5f88-479b-8c42-393d171935f2
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0533 | 0.0055 | 1 | 1.2178 |
1.1372 | 0.0712 | 13 | 1.1764 |
0.9056 | 0.1425 | 26 | 0.8935 |
0.7864 | 0.2137 | 39 | 0.8048 |
0.796 | 0.2849 | 52 | 0.7839 |
0.7511 | 0.3562 | 65 | 0.7741 |
0.7576 | 0.4274 | 78 | 0.7689 |
0.7403 | 0.4986 | 91 | 0.7618 |
0.7916 | 0.5699 | 104 | 0.7577 |
0.7765 | 0.6411 | 117 | 0.7547 |
0.7039 | 0.7123 | 130 | 0.7529 |
0.7594 | 0.7836 | 143 | 0.7501 |
0.7966 | 0.8548 | 156 | 0.7477 |
0.8105 | 0.9260 | 169 | 0.7468 |
0.6799 | 0.9973 | 182 | 0.7456 |
0.7117 | 1.0685 | 195 | 0.7446 |
0.7082 | 1.1397 | 208 | 0.7479 |
0.7889 | 1.2110 | 221 | 0.7464 |
0.6094 | 1.2822 | 234 | 0.7451 |
0.7105 | 1.3534 | 247 | 0.7445 |
0.7257 | 1.4247 | 260 | 0.7432 |
0.7152 | 1.4959 | 273 | 0.7416 |
0.7657 | 1.5671 | 286 | 0.7402 |
0.7808 | 1.6384 | 299 | 0.7396 |
0.7059 | 1.7096 | 312 | 0.7394 |
0.7537 | 1.7808 | 325 | 0.7377 |
0.6318 | 1.8521 | 338 | 0.7373 |
0.7712 | 1.9233 | 351 | 0.7369 |
0.7703 | 1.9945 | 364 | 0.7362 |
0.6556 | 2.0658 | 377 | 0.7415 |
0.6248 | 2.1370 | 390 | 0.7405 |
0.6789 | 2.2082 | 403 | 0.7426 |
0.6595 | 2.2795 | 416 | 0.7436 |
0.6761 | 2.3507 | 429 | 0.7431 |
0.6399 | 2.4219 | 442 | 0.7434 |
0.6672 | 2.4932 | 455 | 0.7434 |
0.5704 | 2.5644 | 468 | 0.7433 |
0.6552 | 2.6356 | 481 | 0.7429 |
0.6455 | 2.7068 | 494 | 0.7429 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support