SciFive Pubmed Base

Introduction

Paper: SciFive: a text-to-text transformer model for biomedical literature

Authors: Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet

How to use

For more details, do check out our Github repo.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed")  
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed")
​
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
text = sentence + " </s>"

encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")

outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)
Downloads last month
164
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train razent/SciFive-base-Pubmed