raphaelbiojout commited on
Commit
38217d8
·
1 Parent(s): d9a0ef6

cpu for dia

Browse files
Files changed (1) hide show
  1. handler.py +7 -7
handler.py CHANGED
@@ -179,7 +179,7 @@ class EndpointHandler():
179
 
180
  self.diarize_model = whisperx.DiarizationPipeline(
181
  "pyannote/speaker-diarization-3.0",
182
- use_auth_token="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", device=device)
183
 
184
  logger.info(f"Model for diarization initialized")
185
 
@@ -233,8 +233,8 @@ class EndpointHandler():
233
  logger.info(f"device: {device}, batch_size: {batch_size}, compute_type:{compute_type}, whisper_model: {whisper_model}")
234
  transcription = self.model.transcribe(audio_nparray, batch_size=batch_size,language=language)
235
  if info:
236
- print(transcription["segments"]) # before alignment
237
- logger.info(transcription["segments"])
238
 
239
  # 3. align
240
  if alignment:
@@ -244,8 +244,8 @@ class EndpointHandler():
244
  transcription = whisperx.align(
245
  transcription["segments"], model_a, metadata, audio_nparray, device, return_char_alignments=False)
246
  if info:
247
- print(transcription["segments"])
248
- logger.info(transcription["segments"])
249
 
250
  # 4. Assign speaker labels
251
  logger.info("--------------- STARTING DIARIZATION ------------------------")
@@ -258,8 +258,8 @@ class EndpointHandler():
258
 
259
  transcription = whisperx.assign_word_speakers(diarize_segments, transcription)
260
  if info:
261
- print(transcription["segments"])
262
- logger.info(transcription["segments"]) # segments are now assigned speaker IDs
263
 
264
  if torch.cuda.is_available():
265
  logger.info("--------------- GPU ------------------------")
 
179
 
180
  self.diarize_model = whisperx.DiarizationPipeline(
181
  "pyannote/speaker-diarization-3.0",
182
+ use_auth_token="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", device="cpu")
183
 
184
  logger.info(f"Model for diarization initialized")
185
 
 
233
  logger.info(f"device: {device}, batch_size: {batch_size}, compute_type:{compute_type}, whisper_model: {whisper_model}")
234
  transcription = self.model.transcribe(audio_nparray, batch_size=batch_size,language=language)
235
  if info:
236
+ print(transcription["segments"][0:10000]) # before alignment
237
+ logger.info(transcription["segments"][0:10000])
238
 
239
  # 3. align
240
  if alignment:
 
244
  transcription = whisperx.align(
245
  transcription["segments"], model_a, metadata, audio_nparray, device, return_char_alignments=False)
246
  if info:
247
+ print(transcription["segments"][0:10000])
248
+ logger.info(transcription["segments"][0:10000])
249
 
250
  # 4. Assign speaker labels
251
  logger.info("--------------- STARTING DIARIZATION ------------------------")
 
258
 
259
  transcription = whisperx.assign_word_speakers(diarize_segments, transcription)
260
  if info:
261
+ print(transcription["segments"][0:10000])
262
+ logger.info(transcription["segments"][0:10000]) # segments are now assigned speaker IDs
263
 
264
  if torch.cuda.is_available():
265
  logger.info("--------------- GPU ------------------------")