|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '"I think this might be the solution."' |
|
- text: '"Oh no, I apologize!"' |
|
- text: Could you repeat that, please? |
|
- text: Oh, this is so disappointing. |
|
- text: Uhh, clear. |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
datasets: |
|
- rbojja/zero-shot-intent-classification |
|
base_model: BAAI/bge-small-en-v1.5 |
|
--- |
|
|
|
# SetFit with BAAI/bge-small-en-v1.5 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [rbojja/zero-shot-intent-classification](https://huggingface.co/datasets/rbojja/zero-shot-intent-classification) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 18 classes |
|
- **Training Dataset:** [rbojja/zero-shot-intent-classification](https://huggingface.co/datasets/rbojja/zero-shot-intent-classification) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 7 | <ul><li>'Oh my, this is great!'</li><li>'Oh, this is fantastic!'</li><li>'Hmm, I’m so delighted!'</li></ul> | |
|
| 3 | <ul><li>"Oh, absolutely, that's it!"</li><li>"Oh, absolutely, that's it!"</li><li>"Yep, that's exactly what I meant."</li></ul> | |
|
| 15 | <ul><li>'Really, no way?'</li><li>'Oh, that’s quite something!'</li><li>'Oh, that’s quite something!'</li></ul> | |
|
| 8 | <ul><li>"Gotcha... oh, that's clear!"</li><li>'Hmm, I see... perfect!'</li><li>'Oh, I see... clear!'</li></ul> | |
|
| 12 | <ul><li>'Uhh, fine.'</li><li>'Oh, clear.'</li><li>'Uhh, noted.'</li></ul> | |
|
| 9 | <ul><li>'Uhh, take care!'</li><li>'Hmm, see you!'</li><li>'Uhh, see you!'</li></ul> | |
|
| 17 | <ul><li>'"Umm, this could be a decent plan."'</li><li>'"I think this might be the solution."'</li><li>'"Maybe this will work out, I suppose."'</li></ul> | |
|
| 0 | <ul><li>"Why can't you just work?!"</li><li>'Seriously, this is a joke!'</li><li>'Ugh, this is so frustrating!'</li></ul> | |
|
| 6 | <ul><li>'"Oh, what if I\'m a dream?"'</li><li>'"Oh, do you speak dolphin?"'</li><li>'"Uhh, do you have a wish?"'</li></ul> | |
|
| 11 | <ul><li>"Uh-huh, that's a valid point."</li><li>'Like, I get it.'</li><li>'Right, I understand.'</li></ul> | |
|
| 16 | <ul><li>'Thank you!'</li><li>'"Hmmm, thanks, you\'re great!"'</li><li>'"Oh, fantastic, thanks a lot!"'</li></ul> | |
|
| 4 | <ul><li>"Sorry, I'm not sure."</li><li>"Well, I'm lost."</li><li>"Hmm, I'm not sure."</li></ul> | |
|
| 10 | <ul><li>'Oh, hi!'</li><li>"Hello! What's new?"</li><li>"Hi! How's life?"</li></ul> | |
|
| 13 | <ul><li>'Oh, gotcha.'</li><li>'Hmmm, okay.'</li><li>'Alright, thanks.'</li></ul> | |
|
| 2 | <ul><li>'What’s the context behind that?'</li><li>'Could you simplify that for me?'</li><li>'Can you explain that concept?'</li></ul> | |
|
| 1 | <ul><li>'"Oh, I didn’t mean to."'</li><li>'"Oops, sorry for the oversight."'</li><li>'"Oops, I’m really sorry."'</li></ul> | |
|
| 5 | <ul><li>'Oh, this is not what I wanted.'</li><li>'Oh no, this is not right.'</li><li>'Seriously, this is a failure.'</li></ul> | |
|
| 14 | <ul><li>'Uhh, superb choice!'</li><li>'Uhh, amazing decision!'</li><li>'Oh, superb performance!'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("rbojja/intent-classification-small") |
|
# Run inference |
|
preds = model("Uhh, clear.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 2 | 4.2224 | 9 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 40 | |
|
| 1 | 40 | |
|
| 2 | 37 | |
|
| 3 | 40 | |
|
| 4 | 41 | |
|
| 5 | 38 | |
|
| 6 | 42 | |
|
| 7 | 38 | |
|
| 8 | 35 | |
|
| 9 | 39 | |
|
| 10 | 42 | |
|
| 11 | 41 | |
|
| 12 | 42 | |
|
| 13 | 44 | |
|
| 14 | 38 | |
|
| 15 | 43 | |
|
| 16 | 47 | |
|
| 17 | 37 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 2) |
|
- num_epochs: (1, 16) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0006 | 1 | 0.149 | - | |
|
| 0.0276 | 50 | 0.1836 | - | |
|
| 0.0552 | 100 | 0.1408 | - | |
|
| 0.0829 | 150 | 0.0978 | - | |
|
| 0.1105 | 200 | 0.0805 | - | |
|
| 0.1381 | 250 | 0.0684 | - | |
|
| 0.1657 | 300 | 0.0594 | - | |
|
| 0.1934 | 350 | 0.051 | - | |
|
| 0.2210 | 400 | 0.0383 | - | |
|
| 0.2486 | 450 | 0.0379 | - | |
|
| 0.2762 | 500 | 0.035 | - | |
|
| 0.3039 | 550 | 0.0334 | - | |
|
| 0.3315 | 600 | 0.0306 | - | |
|
| 0.3591 | 650 | 0.0266 | - | |
|
| 0.3867 | 700 | 0.0264 | - | |
|
| 0.4144 | 750 | 0.018 | - | |
|
| 0.4420 | 800 | 0.0193 | - | |
|
| 0.4696 | 850 | 0.0166 | - | |
|
| 0.4972 | 900 | 0.0165 | - | |
|
| 0.5249 | 950 | 0.016 | - | |
|
| 0.5525 | 1000 | 0.0177 | - | |
|
| 0.5801 | 1050 | 0.0202 | - | |
|
| 0.6077 | 1100 | 0.0133 | - | |
|
| 0.6354 | 1150 | 0.014 | - | |
|
| 0.6630 | 1200 | 0.013 | - | |
|
| 0.6906 | 1250 | 0.0161 | - | |
|
| 0.7182 | 1300 | 0.0119 | - | |
|
| 0.7459 | 1350 | 0.0132 | - | |
|
| 0.7735 | 1400 | 0.0131 | - | |
|
| 0.8011 | 1450 | 0.0123 | - | |
|
| 0.8287 | 1500 | 0.0115 | - | |
|
| 0.8564 | 1550 | 0.0111 | - | |
|
| 0.8840 | 1600 | 0.011 | - | |
|
| 0.9116 | 1650 | 0.01 | - | |
|
| 0.9392 | 1700 | 0.0098 | - | |
|
| 0.9669 | 1750 | 0.0142 | - | |
|
| 0.9945 | 1800 | 0.0132 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- SetFit: 1.1.1 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu121 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |