metadata
language:
- sl
license: apache-2.0
tags:
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- common_voice
base_model: facebook/wav2vec2-xls-r-1b
model-index:
- name: wav2vec2-large-xls-r-1B-common_voice-sl-ft
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: lv
metrics:
- type: wer
value: 23.26
name: Test WER
- type: cer
value: 7.95
name: Test CER
- type: wer
value: 13.59
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sl
metrics:
- type: wer
value: 62.71
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: sl
metrics:
- type: wer
value: 62.34
name: Test WER
wav2vec2-large-xls-r-1B-common_voice-sl-ft
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.2112
- Wer: 0.1404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.8291 | 12.2 | 500 | 0.5674 | 0.7611 |
0.0416 | 24.39 | 1000 | 0.3093 | 0.2964 |
0.0256 | 36.59 | 1500 | 0.2224 | 0.2072 |
0.0179 | 48.78 | 2000 | 0.2274 | 0.1960 |
0.0113 | 60.98 | 2500 | 0.2078 | 0.1582 |
0.0086 | 73.17 | 3000 | 0.1898 | 0.1552 |
0.0059 | 85.37 | 3500 | 0.2054 | 0.1446 |
0.0044 | 97.56 | 4000 | 0.2112 | 0.1404 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3