librarian-bot's picture
Librarian Bot: Add base_model information to model
028be59
|
raw
history blame
2.99 kB
metadata
language:
  - sl
license: apache-2.0
tags:
  - generated_from_trainer
  - hf-asr-leaderboard
  - robust-speech-event
datasets:
  - common_voice
base_model: facebook/wav2vec2-xls-r-1b
model-index:
  - name: wav2vec2-large-xls-r-1B-common_voice-sl-ft
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: lv
        metrics:
          - type: wer
            value: 23.26
            name: Test WER
          - type: cer
            value: 7.95
            name: Test CER
          - type: wer
            value: 13.59
            name: Test WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sl
        metrics:
          - type: wer
            value: 62.71
            name: Test WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: sl
        metrics:
          - type: wer
            value: 62.34
            name: Test WER

wav2vec2-large-xls-r-1B-common_voice-sl-ft

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2112
  • Wer: 0.1404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8291 12.2 500 0.5674 0.7611
0.0416 24.39 1000 0.3093 0.2964
0.0256 36.59 1500 0.2224 0.2072
0.0179 48.78 2000 0.2274 0.1960
0.0113 60.98 2500 0.2078 0.1582
0.0086 73.17 3000 0.1898 0.1552
0.0059 85.37 3500 0.2054 0.1446
0.0044 97.56 4000 0.2112 0.1404

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.10.3