Here's a quick walk through of the first drop of material that works toward the use case:
- a fundamental introduction to reinforcement learning. Answering questions like, ‘what is a reward?’ and ‘how do we create an environment for a language model?’
- Then it focuses on Deepseek R1 by walking through the paper and highlighting key aspects. This is an old school way to learn ML topics, but it always works.
- Next, it takes to you Transformers Reinforcement Learning and demonstrates potential reward functions you could use. This is cool because it uses Marimo notebooks to visualise the reward.
- Finally, Maxime walks us through a real training notebook that uses GRPO to reduce generation length. I’m really into this because it works and Maxime took the time to validate it share assets and logging from his own runs for you to compare with.
Maxime’s work and notebooks have been a major part of the open source community over the last few years. I, like everyone, have learnt so much from them.
I updated the LLM Scientist roadmap and added a ton of new information and references. It covers training, datasets, evaluation, quantization, and new trends like test-time compute scaling.
The LLM Course has been incredibly popular (41.3k stars!) and I've been touched to receive many, many messages about how it helped people in their careers.
I know how difficult this stuff can be, so I'm super proud of the impact it had. I want to keep updating it in 2025, especially with the LLM Engineer roadmap.