|
--- |
|
library_name: transformers |
|
tags: |
|
- automatic-speech-recognition |
|
license: apache-2.0 |
|
datasets: |
|
- reazon-research/reazonspeech |
|
language: |
|
- ja |
|
metrics: |
|
- cer |
|
base_model: |
|
- reazon-research/japanese-wav2vec2-large |
|
--- |
|
|
|
# `japanese-wav2vec2-large-rs35kh` |
|
|
|
This model is a [wav2vec 2.0 Large](https://huggingface.co/reazon-research/japanese-wav2vec2-large) fine-tuned on the large-scale Japanese ASR corpus [ReazonSpeech v2.0](https://huggingface.co/datasets/reazon-research/reazonspeech). |
|
|
|
## Usage |
|
|
|
You can use this model through `transformers` library: |
|
```python |
|
import librosa |
|
import numpy as np |
|
from transformers import AutoProcessor, Wav2Vec2ForCTC |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained( |
|
"reazon-research/japanese-wav2vec2-large-rs35kh", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
).to("cuda") |
|
processor = AutoProcessor.from_pretrained("reazon-research/japanese-wav2vec2-large-rs35kh") |
|
|
|
audio, _ = librosa.load(audio_filepath, sr=16_000) |
|
audio = np.pad(audio, pad_width=int(0.5 * 16_000)) # Recommend to pad audio before inference |
|
input_values = processor( |
|
audio, |
|
return_tensors="pt", |
|
sampling_rate=16_000 |
|
).input_values.to("cuda").to(torch.bfloat16) |
|
|
|
with torch.inference_mode(): |
|
logits = model(input_values).logits.cpu() |
|
predicted_ids = torch.argmax(logits, dim=-1)[0] |
|
transcription = processor.decode(predicted_ids, skip_special_tokens=True) |
|
``` |
|
|
|
## Test Results |
|
|
|
We report the Character Error Rate (CER) of our model and the other wav2vec2 families. |
|
| Model | #Prameters⬇ | AVERAGE⬇ | JSUT-BASIC5000⬇ | Common Voice⬇ | TEDxJP-10K⬇ | |
|
| :---------------------------------------------- | :---------: | :--------: | :-------------: | :-----------: | :---------: | |
|
| reazon-research/japanese-wav2vec2-large-rs35kh | 319M | **16.25%** | 11.00% | 18.23% | **19.53%** | |
|
| reazon-research/japanese-wav2vec2-base-rs35kh | 96.7M | 20.40% | 13.22% | 23.76% | 24.23% | |
|
| Ivydata/wav2vec2-large-xlsr-53-japanese | 318M | 24.23% | 13.83% | **18.15%** | 40.72% | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-japanese | 317M | 31.82% | 4.25% | 40.58% | 50.63% | |
|
| vumichien/wav2vec2-large-xlsr-japanese | 318M | 39.87% | **4.21%** | 53.29% | 62.12% | |
|
|
|
We also report the CER for long-form speech. |
|
| Model | #Prameters⬇ | JSUT-BOOK⬇ | |
|
| :---------------------------------------------- | :---------: | :--------: | |
|
| reazon-research/japanese-wav2vec2-large-rs35kh | 319M | **30.98%** | |
|
| reazon-research/japanese-wav2vec2-base-rs35kh | 96.7M | 82.84% | |
|
| Ivydata/wav2vec2-large-xlsr-53-japanese | 318M | 65.60% | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-japanese | 317M | 46.20% | |
|
| vumichien/wav2vec2-large-xlsr-japanese | 318M | 46.52% | |
|
|
|
## Citation |
|
```bibtex |
|
@misc{reazon-research-japanese-wav2vec2-large-rs35kh, |
|
title={japanese-wav2vec2-large-rs35kh}, |
|
author={Sasaki, Yuta}, |
|
url = {https://huggingface.co/reazon-research/japanese-wav2vec2-large-rs35kh}, |
|
year = {2024} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
[Apaceh Licence 2.0](https://choosealicense.com/licenses/apache-2.0/) |