Gemma-2-Ataraxy-Gemmasutra-9B-slerp
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.87 |
IFEval (0-Shot) | 76.49 |
BBH (3-Shot) | 42.25 |
MATH Lvl 5 (4-Shot) | 1.74 |
GPQA (0-shot) | 10.74 |
MuSR (0-shot) | 12.39 |
MMLU-PRO (5-shot) | 35.63 |
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 73.97 |
ENEM Challenge (No Images) | 75.65 |
BLUEX (No Images) | 64.26 |
OAB Exams | 53.76 |
Assin2 RTE | 93.21 |
Assin2 STS | 80.91 |
FaQuAD NLI | 77.39 |
HateBR Binary | 87.61 |
PT Hate Speech Binary | 66.84 |
tweetSentBR | 66.14 |
- Downloads last month
- 4,606
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard76.490
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard42.250
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard1.740
- acc_norm on GPQA (0-shot)Open LLM Leaderboard10.740
- acc_norm on MuSR (0-shot)Open LLM Leaderboard12.390
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard35.630
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard75.650
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard64.260
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard53.760
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard93.210