license: mit
license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
pipeline_tag: text-generation
base_model: rednote-hilab/dots.llm1.base
tags:
- chat
library_name: transformers
language:
- en
- zh
dots1
1. Introduction
dots.llm1
is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs.
Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1
achieves performance comparable to Qwen2.5-72B when trained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
2. Model Summary
This repo contains the base and instruction-tuned dots.llm1
model. which has the following features:
- Type: A 14B/142B MoE model trained on 11.2T tokens.
- Training Stage: Pretraining & Post-training
- Architecture: Multi-head Attention with QK-Norm in Attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
- Number of Layers: 62
- Number of Attention Heads: 32
- Context Length: 32,768 tokens
- License: MIT
For more details, please refer to our report.
3. Example Usage
Model Downloads
Model | #Total Params | #Activated Params | Context Length | Download Link |
---|---|---|---|---|
dots.llm1.base | 142B | 14B | 32K | 🤗 Hugging Face |
dots.llm1.inst | 142B | 14B | 32K | 🤗 Hugging Face |
Inference with huggingface
Text Completion
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "rednote-hilab/dots.llm1.base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
Chat Completion
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "rednote-hilab/dots.llm1.inst"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
messages = [
{"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
Inference with sglang
SGLang is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. sglang>=***
is required. It is as easy as
python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000
An OpenAI-compatible API will be available at http://localhost:8000/v1
.
Inference with vllm
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.
vllm>=***
is recommended.
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
An OpenAI-compatible API will be available at http://localhost:8000/v1
.
4. Evaluation Results
Detailed evaluation results are reported in this 📑 report.
Citation
If you find dots.llm1
is useful or want to use in your projects, please kindly cite our paper:
@article{dots1,
title={dots.llm1 Technical Report},
author={rednote-hilab},
journal={arXiv preprint arXiv:TBD},
year={2025}
}