dots.llm1.base / README.md
redmoe-ai-v1's picture
Update README.md
3c0bd56
|
raw
history blame
4.82 kB
metadata
license: mit
license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
pipeline_tag: text-generation
base_model: rednote-hilab/dots.llm1.base
tags:
  - chat
library_name: transformers
language:
  - en
  - zh

dots1

1. Introduction

dots.llm1 is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B when trained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.

2. Model Summary

This repo contains the base and instruction-tuned dots.llm1 model. which has the following features:

  • Type: A 14B/142B MoE model trained on 11.2T tokens.
  • Training Stage: Pretraining & Post-training
  • Architecture: Multi-head Attention with QK-Norm in Attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
  • Number of Layers: 62
  • Number of Attention Heads: 32
  • Context Length: 32,768 tokens
  • License: MIT

For more details, please refer to our report.

3. Example Usage

Model Downloads

Model #Total Params #Activated Params Context Length Download Link
dots.llm1.base 142B 14B 32K 🤗 Hugging Face
dots.llm1.inst 142B 14B 32K 🤗 Hugging Face

Inference with huggingface

Text Completion

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "rednote-hilab/dots.llm1.base"
tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

Chat Completion

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "rednote-hilab/dots.llm1.inst"
tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)

messages = [
    {"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

Inference with sglang

SGLang is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. sglang>=*** is required. It is as easy as

python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000

An OpenAI-compatible API will be available at http://localhost:8000/v1.

Inference with vllm

vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. vllm>=*** is recommended.

vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8

An OpenAI-compatible API will be available at http://localhost:8000/v1.

4. Evaluation Results

Detailed evaluation results are reported in this 📑 report.

Citation

If you find dots.llm1 is useful or want to use in your projects, please kindly cite our paper:

@article{dots1,
      title={dots.llm1 Technical Report}, 
      author={rednote-hilab},
      journal={arXiv preprint arXiv:TBD},
      year={2025}
}