Deperta / README.md
reem442's picture
Training in progress epoch 2
e01ac32
metadata
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
  - generated_from_keras_callback
model-index:
  - name: reem442/T5
    results: []

reem442/T5

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2094
  • Train Accuracy: 0.934
  • Validation Loss: 0.2149
  • Validation Accuracy: 0.9340
  • Train Precision: 0.9362
  • Train Recall: 0.934
  • Train F1: 0.9336
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Train Precision Train Recall Train F1 Epoch
0.9979 0.88 0.3892 0.8800 0.8846 0.88 0.8791 0
0.3015 0.9115 0.2843 0.9115 0.9169 0.9115 0.9111 1
0.2094 0.934 0.2149 0.9340 0.9362 0.934 0.9336 2

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2