Model Card of lmqg/mbart-large-cc25-itquad-qg
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_itquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: it
- Training data: lmqg/qg_itquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="lmqg/mbart-large-cc25-itquad-qg")
# model prediction
questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-itquad-qg")
output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 80.63 | default | lmqg/qg_itquad |
Bleu_1 | 22.51 | default | lmqg/qg_itquad |
Bleu_2 | 14.62 | default | lmqg/qg_itquad |
Bleu_3 | 10.06 | default | lmqg/qg_itquad |
Bleu_4 | 7.13 | default | lmqg/qg_itquad |
METEOR | 17.97 | default | lmqg/qg_itquad |
MoverScore | 56.84 | default | lmqg/qg_itquad |
ROUGE_L | 21.69 | default | lmqg/qg_itquad |
- Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 87.56 | default | lmqg/qg_itquad |
QAAlignedF1Score (MoverScore) | 61.71 | default | lmqg/qg_itquad |
QAAlignedPrecision (BERTScore) | 87.62 | default | lmqg/qg_itquad |
QAAlignedPrecision (MoverScore) | 61.83 | default | lmqg/qg_itquad |
QAAlignedRecall (BERTScore) | 87.5 | default | lmqg/qg_itquad |
QAAlignedRecall (MoverScore) | 61.59 | default | lmqg/qg_itquad |
- Metric (Question & Answer Generation, Pipeline Approach): Each question is generated on the answer generated by
lmqg/mbart-large-cc25-itquad-ae
. raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 40.13 | default | lmqg/qg_itquad |
QAAlignedF1Score (MoverScore) | 27.8 | default | lmqg/qg_itquad |
QAAlignedPrecision (BERTScore) | 40.43 | default | lmqg/qg_itquad |
QAAlignedPrecision (MoverScore) | 28.09 | default | lmqg/qg_itquad |
QAAlignedRecall (BERTScore) | 39.88 | default | lmqg/qg_itquad |
QAAlignedRecall (MoverScore) | 27.54 | default | lmqg/qg_itquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 8
- batch: 4
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train research-backup/mbart-large-cc25-itquad-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_itquadself-reported7.130
- ROUGE-L (Question Generation) on lmqg/qg_itquadself-reported21.690
- METEOR (Question Generation) on lmqg/qg_itquadself-reported17.970
- BERTScore (Question Generation) on lmqg/qg_itquadself-reported80.630
- MoverScore (Question Generation) on lmqg/qg_itquadself-reported56.840
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_itquadself-reported87.560
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_itquadself-reported87.500
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_itquadself-reported87.620
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_itquadself-reported61.710
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_itquadself-reported61.590