asahi417's picture
model update
b42d503
|
raw
history blame
6.85 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: ko
datasets:
  - lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로
      출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.
    example_title: Question Generation Example 1
  - text: >-
      백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진
      타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다.
    example_title: Question Generation Example 2
  - text: <hl> 원테이크 촬영 <hl> 이기 때문에  사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mbart-large-cc25-koquad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_koquad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.10924223302065934
          - name: ROUGE-L
            type: rouge-l
            value: 0.2776374700887909
          - name: METEOR
            type: meteor
            value: 0.3022853307791723
          - name: BERTScore
            type: bertscore
            value: 0.8388571484491499
          - name: MoverScore
            type: moverscore
            value: 0.8294576496428497
          - name: QAAlignedF1Score (BERTScore)
            type: qa_aligned_f1_score_bertscore
            value: 0.8818018633414481
          - name: QAAlignedRecall (BERTScore)
            type: qa_aligned_recall_bertscore
            value: 0.8818018620939322
          - name: QAAlignedPrecision (BERTScore)
            type: qa_aligned_precision_bertscore
            value: 0.8818018620939322
          - name: QAAlignedF1Score (MoverScore)
            type: qa_aligned_f1_score_moverscore
            value: 0.8553077643399473
          - name: QAAlignedRecall (MoverScore)
            type: qa_aligned_recall_moverscore
            value: 0.8553001327740917
          - name: QAAlignedPrecision (MoverScore)
            type: qa_aligned_precision_moverscore
            value: 0.8553001327740917

Model Card of lmqg/mbart-large-cc25-koquad

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg.

Please cite our paper if you use the model (https://arxiv.org/abs/2210.03992).


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

Overview

Usage


from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='ko', model='lmqg/mbart-large-cc25-koquad')
# model prediction
question = model.generate_q(list_context=["1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다."], list_answer=["남부군"])
  • With transformers

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/mbart-large-cc25-koquad')
# question generation
question = pipe('1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.')

Evaluation Metrics

Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_koquad default 0.109 0.278 0.302 0.839 0.829 link

Metrics (QAG)

Dataset Type QA Aligned F1 Score (BERTScore) QA Aligned F1 Score (MoverScore) Link
lmqg/qg_koquad default 0.882 0.855 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_koquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: facebook/mbart-large-cc25
  • max_length: 512
  • max_length_output: 32
  • epoch: 6
  • batch: 4
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}